Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T14:49:17.037Z Has data issue: false hasContentIssue false

Monitoring the structural and chemical properties of CNx thin films during in situ annealing in a TEM

Published online by Cambridge University Press:  15 February 2001

S. E. Grillo*
Affiliation:
CEMES/CNRS, 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse, France
N. Hellgren
Affiliation:
Thin Film Physics Division, Department of Physics, Linköping University, 58183 Linköping, Sweden
V. Serin
Affiliation:
CEMES/CNRS, 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse, France
E. Broitman
Affiliation:
Thin Film Physics Division, Department of Physics, Linköping University, 58183 Linköping, Sweden
C. Colliex
Affiliation:
Laboratoire de Physique des Solides (URA 002), Université de Paris-Sud, Bât. 510, 91405 Orsay, France and Laboratoire Aimé Cotton (UPR 3321), Campus d'Orsay, Bât. 505, 91405 Orsay, France
L. Hultman
Affiliation:
Thin Film Physics Division, Department of Physics, Linköping University, 58183 Linköping, Sweden
Y. Kihn
Affiliation:
CEMES/CNRS, 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse, France
Get access

Abstract

Carbon nitride films synthesised by magnetron sputtering at different substrate temperatures have been studied using electron energy loss spectroscopy (EELS) during annealing performed in situ in a transmission electron microscope (TEM). The proportion of sp2 hybridised carbon slightly decreases initially during heating, presumably because of the removal of defects in the structure, whilst it increases at higher temperatures when graphitisation tends to take place, as confirmed by high resolution electron microscopy (HREM). Substantial amounts of nitrogen (up to ~ 80% ) are removed following annealing at 1000 °C. A corresponding decrease in the pre-peak of the nitrogen spectra suggests that pyridine-like N is released by annealing. As this peak component decreases, a second peak, of weaker intensity, is becoming apparent in the EELS spectra when the films are heated at temperatures above approximately 700 °C. The possibility has been suggested that this corresponds to N substituted for C in a graphitic structure, with possibly also some N2 contributing to the peak.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cuomo, J.J., Leary, P.A., Yu, D., Reuter, W., Frisch, M., J. Vac. Sci. Technol. 16, 299 (1979). CrossRef
Han, H.X., Feldman, B.J., Solid State Commun. 65, 921 (1988). CrossRef
Torng, C.J., Sivertsen, J.M., Judy, J.H., Chang, C., J. Mater. Res. 5, 2490 (1990). CrossRef
Liu, A.Y., Cohen, M.L., Science 245, 841 (1989). CrossRef
Liu, A.Y., Cohen, M.L., Phys. Rev. B 41, 10727 (1990). CrossRefPubMed
Muhl, S., Méndez, J.M., Diamond Relat. Mater. 8, 1809 (1999). CrossRef
Axén, N., Botton, G.A., Somekh, R.E., Hutchings, I.M., Diamond Relat. Mater. 5, 163 (1996). CrossRef
McCulloch, D.C., Merchant, A.R., Thin Solid Films 99, 290 (1996).
Wan, L., Egerton, R.F., Thin Solid Films 279, 34 (1996). CrossRef
Freire Jr, F.L.., C.A. Achete, G. Mariotto, R. Canteri, J. Vac. Sci. Technol. A 12, 3048 (1994). CrossRef
Sjöström, H., Stafström, S., Boman, M., Sundgren, J.-E., Phys. Rev. Lett. 75, 1336 (1995). CrossRef
A. Grill, Surf. Coat. Technol. 94; 95, 507 (1997).
Bai, H.L., Jiand, E.Y., Wu, P., Lou, Z.D., Wang, Y., Wang, C.D., Appl. Phys. A 69, 641 (1999). CrossRef
Hellgren, N., Johansson, M.P., Broitman, E., Hultman, L., Sundgren, J.-E., Phys. Rev. B 59, 5162 (1999). CrossRef
Jaouen, M., Hug, G., Gonnet, V., Demazeau, G., Tourillon, G., Microsc. Microanal. Microstruct. 6, 127 (1995). CrossRef
N. Hellgren, N. Lin, E. Broitman, V. Serin, S.E. Grillo, C. Colliex, L. Hultman, J.-E. Sundgren (to be published).
R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, 1996).
Hammer, P., Gissler, W., Diamond Relat. Mater. 5, 1152 (1996). CrossRef
Hammer, P., Baker, M.A., Leonardi, C., Gissler, W., Thin Solid Films 290, 107 (1996). CrossRef
Hellgren, N., Johansson, M.P., Broitman, E., Sandström, P., Hultman, L., Sundgren, J.-E., Thin Solid Films 382, 146 (2001). CrossRef
Serin, V., Brydson, R., Kihn, Y., Abidale, O., Derré, A., Carbon 38, 547 (2000). CrossRef
Hitchcock, A.P., Mancini, D.C., Phys. Rev. A 36, 1683 (1987) (http://xray.uu.se/hypertext/corexdb.html, corex data base).
Plashkevych, O., Snis, A., Yang, L., H. Âgren, S.F. Matar, Phys. Scripta 63, 70 (2001). CrossRef
Suenaga, K., Johansson, M.P., Hellgren, N., Broitman, E., Wallenberg, L.R., Colliex, C., Sundgren, J.-E., Hultman, L., Chem. Phys. Lett. 300, 695 (1999). CrossRef
Watt, W., Carbon 10, 121 (1972). CrossRef
Watt, W., Nature 236, 10 (1972).
B.C. Holloway, Ph.D thesis, Stanford University, Palo Alto, CA (1997).
Lopez, S., Dunlop, H.M., Benmalek, M., Tourillon, G., Wong, M.-S., Sproul, W.S., Surf. Interface Anal. 25, 827 (1997). 3.0.CO;2-W>CrossRef
Fernandez-Ramos, C., Sayagues, M.J., Rojas, T.C., Alcala, M.D., Real, C., Fernadez, A., Diamond Relat. Mater. 9, 212 (2000). CrossRef
Sandré, E., Pickard, C., Colliex, C., Chem. Phys. Lett. 325, 53 (2000). CrossRef
Snis, A., Matar, S., Phys. Rev. B. 60, 10855 (1999). CrossRef