Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T03:07:31.123Z Has data issue: false hasContentIssue false

Magnetotransport in a two-subband AlGaN/GaN heterostructure in the presence of mixed disorder

Published online by Cambridge University Press:  23 October 2014

Wilfried Desrat*
Affiliation:
Université Montpellier 2 and CNRS, Laboratoire Charles Coulomb UMR 5221, 34095 Montpellier, France
Magdalena Chmielowska
Affiliation:
CRHEA-CNRS UPR 10, rue B. Grégory, Parc de Sophia Antipolis, 06560 Valbonne, France
Sébastien Chenot
Affiliation:
CRHEA-CNRS UPR 10, rue B. Grégory, Parc de Sophia Antipolis, 06560 Valbonne, France
Yvon Cordier
Affiliation:
CRHEA-CNRS UPR 10, rue B. Grégory, Parc de Sophia Antipolis, 06560 Valbonne, France
Benoît Jouault
Affiliation:
Université Montpellier 2 and CNRS, Laboratoire Charles Coulomb UMR 5221, 34095 Montpellier, France
Get access

Abstract

We present magnetotransport measurements on a high electron density AlGaN/GaN heterostructure with two subbands populated at T = 1.6 K. The transport scattering times, τtr, of each subband are first derived at low magnetic field by taking into account the magneto-intersubband scattering term. Then the quantum scattering times, τq, are extracted from independent Dingle plots, obtained at higher magnetic fields. All scattering times are studied as a function of the total electronic density, increased by the persistent photo-conductivity effect. A standard modelization, based on all common scattering mechanisms, reveals that the transport scattering time is governed by the short-range AlGaN/GaN interface roughness (IR) scattering, whereas the quantum scattering time is due to the smooth potential induced by remote ionized impurities (II) at the GaN surface. This intermediate situation of mixed disorder, where the τtr/τq ratio is greater than one, does not indicate that the mobility is limited by Coulomb scattering. It is due to the unusual condition, τtrII≫τtrIR≫τqII$ {\tau }_{\mathrm{t}r}^{\mathrm{II}}\gg {\tau }_{\mathrm{t}r}^{\mathrm{IR}}\gg {\tau }_{\mathrm{q}}^{\mathrm{II}}$.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shur, M., Davis, R., GaN-Based Materials and Devices (World Scientific Publishing Co., Singapore, 2004)Google Scholar
Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.M., IEEE Trans. Microwave Theor. Tech. 60, 1764 (2012)Google Scholar
Ridley, B.K., Quantum Processes in Semiconductors, 4th edn. (Oxford University Press, 1999)Google Scholar
Ando, T., Fowler, A.B., Stern, F., Rev. Mod. Phys. 54, 437 (1982)Google Scholar
Harrang, J.P., Higgins, R.J., Goodall, R.K., Jay, P.R., Laviron, M., Delescluse, P., Phys. Rev. B 32, 8126 (1985)Google Scholar
Hsu, L., Walukiewicz, W., Appl. Phys. Lett. 80, 2508 (2002)Google Scholar
das Sarma, S., Hwang, E.H., arXiv:1401.0183Google Scholar
Gornyi, I.V., Mirlin, A.D., Phys. Rev. B 69, 045313 (2004)Google Scholar
Pèrez-Tomás, A., Fontserè, A., Llobet, J., Placidi, M., Rennesson, S., Baron, N., Chenot, S., Moreno, J.C., Cordier, Y., J. Appl. Phys. 113, 174501 (2013)Google Scholar
van der Pauw, J.L., Philips Res. Rep. 13, 1 (1958)Google Scholar
Tang, N., et al., Phys. Rev. B 76, 155303 (2007)Google Scholar
Lo, I., et al., Phys. Rev. B 74, 245325 (2006)Google Scholar
Knap, W., Frayssinet, E., Sadowski, M., Skierbiszewski, C., Maude, D., Falko, V., Khan, M.A., Shur, M., Appl. Phys. Lett. 75, 3156 (1999)Google Scholar
Nicholas, R.J., Haug, R.J., Klitzing, K.V., Weimann, G., Phys. Rev. B 37, 1294 (1988)Google Scholar
Dziuba, Z., Phys. Status Solidi A 153, 445 (1996)Google Scholar
Lisesivdin, S.B., Tasli, P., Kasap, M., Ozturk, M., Arslan, E., Ozcelik, S., Ozbay, E., Thin Solid Films 518, 5572 (2010)Google Scholar
Smith, T.P. III, Fang, F.F., Phys. Rev. B 37, 4303 (1988)Google Scholar
Studenikin, S.A., Chaplik, A.V., Panaev, I.A., Salis, G., Ensslin, K., Maranowski, K., Gossard, A.C., Semicond. Sci. Technol. 14, 604 (1999)Google Scholar
Fletcher, R., Tsaousidou, M., Smith, T., Coleridge, P.T., Wasilewski, Z.R., Feng, Y., Phys. Rev. B 71, 155310 (2005)Google Scholar
Zaremba, E., Phys. Rev. B 45, 14143 (1992)Google Scholar
Lo, I., et al., Phys. Rev. B 65, 161306 (2002)Google Scholar
Asgari, A., Babanejad, S., Faraone, L., J. Appl. Phys. 110, 113713 (2011)Google Scholar
Antoszewski, J., Gracey, M., Dell, J.M., Faraone, L., Fisher, T.A., Parish, G., Wu, Y.F., Mishra, U.K., J. Appl. Phys. 87, 3900 (2000)Google Scholar
Jena, D., Smorchkova, Y., Elsass, C., Gossard, A.C., Mishra, U.K., arXiv:cond-mat/0103461Google Scholar
Farvacque, J.L., Bougrioua, Z., Phys. Rev. B 68, 035335 (2003)CrossRefGoogle Scholar
Hai, G.Q., Studart, N., Peeters, F.M., Phys. Rev. B 52, 8363 (1995)Google Scholar
Cheng, H., Kurdak, Ç., Leach, J.H., Wu, M., Morkoç, H., Appl. Phys. Lett. 97, 112113 (2010)Google Scholar
Miao, Z.L., J. Appl. Phys. 109, 016102 (2011)CrossRefGoogle Scholar
Lorenzini, P., Bougrioua, Z., Tiberj, A., Tauk, R., Azize, M., Sakowicz, M., Karpierz, K., Knap, W., Appl. Phys. Lett. 87, 232107 (2005)Google Scholar
Quang, D.N., Tung, N.H., Tuoc, V.N., Minh, N.V., Huy, H.A., Hien, D.T., Phys. Rev. B 74, 205312 (2006)Google Scholar
Manfra, M.J., Simon, S.H., Baldwin, K.W., Sergent, A.M., West, K.W., Molnar, R.J., Caissie, J., Appl. Phys. Lett. 85, 5278 (2004)Google Scholar