Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-05T23:01:19.293Z Has data issue: false hasContentIssue false

Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts

Published online by Cambridge University Press:  26 October 2005

L. Quettier*
Affiliation:
GREEN, INPL-Nancy, 2 Av. de la Forêt de Haye, 54516 Vandœuvre, France SACM, CEA-Saclay, 91191 Gif-sur-Yvette, France
H. Félice
Affiliation:
GREEN, INPL-Nancy, 2 Av. de la Forêt de Haye, 54516 Vandœuvre, France SACM, CEA-Saclay, 91191 Gif-sur-Yvette, France
A. Mailfert
Affiliation:
LEM, INPL-Nancy, 2 Av. de la Forêt de Haye, 54516 Vandœuvre, France
D. Chatain
Affiliation:
SBT, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex, France
D. Beysens
Affiliation:
SBT, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex, France
Get access

Abstract

Magnetic compensation of gravity forces, similar to the space conditions of “microgravity”, needs the production of a uniform magnetic force field. We derive here a basic mathematical result that shows the impossibility to establish exact gravity compensation in a finite volume. The imperfection of compensation can be, however, quantified and a relation is derived between homogeneity accuracy and compensation volume in a cylindrical symmetry. We study how the use of inserts made of saturated ferromagnetic materials can modify the homogeneity of magnetic force field. In order to illustrate this result, an iron insert has been numerically calculated for the particular case of gravity compensation of H2 in a 10 T superconducting coil. An experimental test has been carried out on a H2 vapour bubble very close to its gas-liquid critical point. Near the critical point the gas-liquid interfacial tension is vanishing, then any bubble deformation from the ideal spherical shape reveals the non-homogeneities in the magnetic compensation force.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaugnon, E., Tournier, R., J. Phys. III France 8, 1423 (1991) CrossRef
Berry, M.V., Geim, A.K., J. Appl. Phys. 18, 307 (1997)
O. Ozaki, J. Fujihira, T. Kiyoshi, K. Koyanagi, S. Matsumoto, H. Wada, MT 17, Geneva, 2001
Wunenburger, R., Chatain, D., Garrabos, Y., Beysens, D., Phys. Rev. E 62, 469 (2000) CrossRef
Quettier, L., Mailfert, A., IEEE T. Appl. Super. 13, 1608 (2003) CrossRef
D. Beysens, D. Chatain, V. Nikolayev, Y. Garrabos, Magnetic facility gives Heat transfer data in H2 at various acceleration levels, 4th International Conference on Launcher Technology, Space Launcher Liquid Propulsion, 3–6 December 2002, Liege, Belgium (2003)
Vincent-Viry, O., Quettier, L., Leveque, J., Mailfert, A., Chatain, D., IEEE T. Magn. 40, 124 (2004) CrossRef
L. Quettier, A. Mailfert, in Optimisation and Inverse Problems in Electromagnetism, edited by M. Rudnicki, S. Wiak (Kluwer Academic Publishers, Dordrecht, 2003), Chap. 2, p. 125, ISBN 1-4020-1506-2
G. Aubert, Private communication
P. Elleaume, O. Chubar, J. Chavanne, Proc. PAC 97 Conference, Vancouver, B.C., Canada, 1997, pp. 3509–3511