Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T03:01:58.556Z Has data issue: false hasContentIssue false

Ion-beam sputtering deposition and magnetoelectric properties of layered heterostructures (FM/PZT/FM)n, where FM – Co or Ni78Fe22

Published online by Cambridge University Press:  07 August 2013

Alexander Stognij
Affiliation:
Scientific-Practical Materials Research Centre NAS of Belarus, 19 P. Brovki Street, Minsk 220072, Belarus
Nikolai Novitskii
Affiliation:
Scientific-Practical Materials Research Centre NAS of Belarus, 19 P. Brovki Street, Minsk 220072, Belarus
Andrei Sazanovich*
Affiliation:
Institute of Physics, Polish Academy of Science, 02-668 Warsaw, Poland
Nadezhda Poddubnaya
Affiliation:
Scientific-Practical Materials Research Centre NAS of Belarus, 19 P. Brovki Street, Minsk 220072, Belarus
Sergei Sharko
Affiliation:
Scientific-Practical Materials Research Centre NAS of Belarus, 19 P. Brovki Street, Minsk 220072, Belarus
Vladimir Mikhailov
Affiliation:
A.A. Galkin Donetsk Physico-Technical Institute, NNU, 83114 Donetsk, Ukraine
Viktor Nizhankovski
Affiliation:
International Laboratory of High Magnetic Fields and Low Temperatures, 53-421 Wroclaw, Poland
Vladimir Dyakonov
Affiliation:
Institute of Physics, Polish Academy of Science, 02-668 Warsaw, Poland A.A. Galkin Donetsk Physico-Technical Institute, NNU, 83114 Donetsk, Ukraine
Henryk Szymczak
Affiliation:
Institute of Physics, Polish Academy of Science, 02-668 Warsaw, Poland
*
Get access

Abstract

Magnetoelectric properties of layered heterostructures (FM/PZT/FM)n (n≤ 3) obtained by ion-beam sputtering deposition of ferromagnetic metal (FM), where FM is the cobalt (Co) or permalloy Ni78Fe22, onto ferroelectric ceramic based on lead zirconate titanate (PZT) have been studied. The polished ferroelectric plates in thickness from 400 to 20 μm were subjected to finished treatment by ion-beam sputtering. After plasma activation they were covered by the ferromagnetic films from 1 to 6 μm in thickness. Enhanced characteristics of these structures were reached by means of both the thickness optimization of ferroelectric and ferromagnetic layers and obtaining of ferromagnetic/ferroelectric interfaces being free from defects and foreign impurities. Assuming on the basis of analysis of elastic stresses in the ferromagnetic film that the magnetoelectric effect forms within ferromagnetic/ferroelectric interface, the structures with 2–3 ferromagnetic layers were obtained. In layered heterostructure (Py/PZT/Py)3, the optimal thickness of ferromagnetic film was 2 μm, and outer and inner ferroelectric layers had 20 μm and 80 μm in thickness, respectively. For such structure the maximal magnetoelectric voltage coefficient of 250 mV/(cm Oe) was reached at a frequency 100 Hz in magnetic field of 0.25 T at room temperature. The structures studied can serve as energy-independent elements detecting the change of magnetic or electric fields in electronic devices based on magnetoelectric effect.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fiebig, M., J. Phys. D: Appl. Phys. 38, R123 (2005)CrossRef
Nan, C.W., Phys. Rev. B 50, 6082 (1994) CrossRef
Mori, K., Wuttig, M., Appl. Phys. Lett. 81, 100 (2002)CrossRef
Zhai, J., Dong, S., Xing, Z., Li, J., Viehland, D., Appl. Phys. Lett. 89, 83507-1-3 (2006)
Fiebig, M., Lottermoser, T., Frohlich, D., Goltsev, A.V., Pisarev, R.V., Nature 419, 818 (2002)CrossRef
Bichurin, M.I., Petrov, V.M., Petrov, R.V., Kapralov, G.N., Kiliba, Y.V., Bukashev, F.I., Smirnov, A.Y., Tatarenko, A.S., Ferroelectrics 280, 377 (2002)CrossRef
Wang, G.H., Wan, J.G., Liu, J.M., Nan, C.W., Appl. Phys. Lett. 88, 182505 (2006)
Zhai, J.Y., Xing, Z., Dong, S.X., Li, J.F., Viehland, D., Appl. Phys. Lett. 88, 062510 (2006)CrossRef
Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G., J. Appl. Phys. 103, 031101 (2008)CrossRef
Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Y.I., Laletin, V.M., Phys. Rev. B 64, 214408 (2001)CrossRef
Dong, S.X., Cheng, J.R., Li, J.F., Dong, S.X., Li, J.F., Viehland, D., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. Control 50, 1236 (2003)CrossRef
Li, J.F., Dong, S., Cheng, J., Viehland, D., Appl. Phys. Lett. 83, 4812 (2003)
Levin, B.J., Srinivasan, G., Rasmussen, E.T., Hayes, R., Phys. Rev. B 65, 134402 (2002)CrossRef
Li, J.F., Dong, S.X., Viehland, D., J. Appl. Phys. 95, 2625 (2004)
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R., Science 299, 1719 (2003)CrossRef
Lottermoser, T., Fiebig, M., Phys. Rev. B 70, 220407(R) (2004)CrossRef
Fetisov, Y.K., Srinivasan, G., Fetisov, L.Y., Appl. Phys. Lett. 94, 132507 (2009)CrossRef
Stashkevich, A.A., Roussigne, Y., Djemina, P., Billet, D., Novitskii, N.N., Stognij, A.I., Wurtz, G.A., Zayats, A.V., Viau, G., Chaboussant, G., Ott, F., Gautrot, S., Lutsev, L.V., Kostylev, M.P., Belotelov, V., J. Appl. Phys. 104, 093912 (2008)CrossRef
Klee, M., Eusemann, R., Waser, R., Brand, W., J. Appl. Phys. 72, 1566 (1992)CrossRef
Petrov, V.M., Srinivasan, G., Laletin, V.M., Bichurin, M.I., Tuskov, D.S., Poddubnaya, N.N., Phys. Rev. B 75, 174422 (2007)CrossRef
Stognij, A.I., Paddubnaya, N., Laletin, V.M., Novitskii, N.N., Funct. Mater. 17, 329 (2010)
Stognij, A.I., Pashkevich, M.V., Novitskii, N.N., Gribkov, B.A., Mironov, V.L., Geraskin, A.A., Ketsko, V.A., Fettar, F., Garad, H., Inorg. Mater. 47, 869 (2011)CrossRef
Radulov, I., Nizhankovskii, V.I., Lovchinov, V., Dimitrov, D., Apostolov, A., Eur. Phys. J. B 52, 361 (2006)CrossRef
Stognij, A.I., Novitskii, N.N., Poddubnaya, N.N., Sharko, S.A., Szymczak, H., Dyakonov, V.P., in Moscow International Symposium on Magnetism, Book of Abstracts (Moscow, Russia, 2011), p. 490 Google Scholar
Matthews, J.W., Mader, S., J. Appl. Phys. 41, 3800 (1970)CrossRef
Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, Group III, Crystal and Solid State Physics, vol. 4(b) (Springer-Verlag, New York, 1970)
Kittel, C., Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)Google Scholar
Gorelik, S.S., Skakov, Y.A., Rastorguev, L.N, Rentgenograficheskiy i elektronnoopticheskiy analiz Prilozheniya (Metallurgiya, Moskwa, 1970), p. 367 Google Scholar
Lide, D.R., CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, Boca Raton, FL, 1999)Google Scholar