Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T20:02:22.230Z Has data issue: false hasContentIssue false

Interaction between infrared laser modes in Rydberg Matter: redshifted modesin reflection and blueshifted in transmission

Published online by Cambridge University Press:  16 March 2004

L. Holmlid*
Affiliation:
Atmospheric Science, Department of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden
Get access

Abstract

When an almost single-mode IR laser beam is reflected from an IR window with a deposit of Rydberg Matter on the inner, vacuum face, the laser modes appear red-shifted; thus their maxima are observed at lower laser current. This effect is complementary to the previously reported blue-shifts of IR laser modes in transmission through Rydberg Matter. Both types of shifts are due to interaction between the laser modes, now proved by using only two isolated modes both in reflection and transmission. The general process is stimulated Raman scattering. Rydberg Matter is here formed from Rydberg states of K atoms and nitrogen molecules inside a vacuum chamber. A theoretical description is given that involves slow decay or increase in the energy of the photons interacting with the Rydberg Matter, depending on the temperature of this matter. This means that the two isolated modes studied may become almost resonant within certain frequency ranges. The energy increase (frequency blue-shifting) of photons passing hot Rydberg Matter has been reported previously. The description used explains both the red-shifted reflection and the blue-shifted transmission results.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Holmlid, L., Langmuir 17, 268 (2001) CrossRef
Olofson, F., Badiei, S., Holmlid, L., Langmuir 19, 5756 (2003) CrossRef
Holmlid, L., J. Astrophys. 548, L249 (2001) CrossRef
Holmlid, L., Phys. Rev. A 63, 013817 (2001) CrossRef
Holmlid, L., Chem. Phys. Lett. 367, 556 (2003) CrossRef
Manykin, É.A., Ozhovan, M.I., Poluéktov, P.P., Sov. Phys. Tech. Phys. Lett. 6, 95 (1980)
Manykin, É.A., Ozhovan, M.I., Poluéktov, P.P., Sov. Phys. Dokl. 26, 974 (1981)
Svensson, R., Holmlid, L., Lundgren, L., J. Appl. Phys. 70, 1489 (1991) CrossRef
R. Svensson, L. Holmlid, Surf. Sci. 269/270, 695 (1992)
Manykin, É.A., Ozhovan, M.I., Poluéktov, P.P., Sov. Phys. JETP 75, 440 (1992)
Manykin, É.A., Ozhovan, M.I., Poluéktov, P.P., Sov. Phys. JETP 75, 602 (1992)
Wang, J., Holmlid, L., Chem. Phys. Lett. 295, 500 (1998) CrossRef
Holmlid, L., Chem. Phys. 237, 11 (1998) CrossRef
Wang, J., Holmlid, L., Chem. Phys. 261, 481 (2000) CrossRef
Wang, J., Holmlid, L., Chem. Phys. 277, 201 (2002) CrossRef
Badiei, S., Holmlid, L., Int. J. Mass Spectrom. 220, 127 (2002) CrossRef
Badiei, S., Holmlid, L., Chem. Phys. 282, 137 (2002) CrossRef
Badiei, S., Holmlid, L., Mon. Not. R. Astron. Soc. 333, 360 (2002) CrossRef
Holmlid, L., Astron. Astrophys. 358, 276 (2000)
A. Kotarba, G. Adamski, Z. Sojka, S. Witkowski, G. Djega-Mariadassou, Studies in Surface Science and Catalysis (International Congress on Catalysis, 2000, Pt. A), Vol. 130A, 485
Kotarba, A., Dmytrzyk, J., Narkiewicz, U., Baranski, A., React. Kinet. Catal. Lett. 74, 143 (2001) CrossRef
Kotarba, A., Baranski, A., Hodorowicz, S., Sokolowski, J., Szytula, A., Holmlid, L., Catal. Lett. 67, 129 (2000) CrossRef
Yarygin, V.I., Sidelnikov, V.N., Kasikov, I.I., Mironov, V.S., Tulin, S.M., JETP Lett. 77, 330 (2003) CrossRef
Svensson, R., Holmlid, L., Phys. Rev. Lett. 83, 1739 (1999) CrossRef
J.C. White, in Tunable lasers, Topics in Applied Physics edited by L.F. Mollenauer, J.C. White, C.R. Pollock, 2nd edn. (Springer, Berlin, 1992), Vol. 59
W. Demtröder, Laser Spectroscopy, Basic Concepts and Instrumentation, 2nd edn. (Springer, Berlin, 1996)
A. Yariv, Quantum Electronics 3rd edn. (Wiley, New York, 1989)
Y.R. Shen, The principles of nonlinear optics (Wiley, New York, 1984)