Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-01T14:20:52.687Z Has data issue: false hasContentIssue false

In-situ microscopy study of nanocavity shrinkage in Siunder ion beam irradiation

Published online by Cambridge University Press:  11 December 2002

M.-O. Ruault*
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR CNRS-Université Paris XI, Orsay, France
M. C. Ridgway
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australia
F. Fortuna
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR CNRS-Université Paris XI, Orsay, France
H. Bernas
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR CNRS-Université Paris XI, Orsay, France
J. S. Williams
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australia
Get access

Abstract

We report an in situ transmission electron microscopy (TEM) study of nanocavity evolution in amorphous Si (a-Si) under ion beam irradiation. The size evolution of the nanocavities was monitored during ion irradiation with Si or As at various temperatures between 300 and 600 K. A linear decrease of the nanocavity diameter was found as the ion fluence increased; it was much faster than its counterpart in crystalline Si (c-Si). Here, the shrinkage rate depended on the irradiation-induced atomic displacement rate. No significant temperature dependence was observed, confirming that the irradiation-induced nanocavity shrinkage in a-Si is essentially due to ballistic interactions, i.e., differs radically from that in c-Si. 


Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruel, M., Electron Lett. 31, 1201 (1995) CrossRef
Raineri, V., Campisano, U., Nucl. Instrum. Methods Phys. Res. B 120, 56 (1996) CrossRef
Kalyanaraman, R., Haynes, T.E., Venezia, V.C., Jacobson, D.C., Gossmann, H.-J., Rafferty, C.S., Appl. Phys. Lett. 76, 3379 (2000) CrossRef
Myers, S.M., Petersen, G.A., Phys. Rev. B 57, 7015 (1998) CrossRef
Wong-Leung, J., Williams, J.S., Kinomura, A., Nakano, Y., Hayashi, Y., Eaglesham, D.J., Phys. Rev. B 59, 7990 (1999) CrossRef
R G. Elliman, J. S. Williams, in Materials Analysis Using Ion Beams, edited by J.R. Bird, J.S. Williams (Academic, Sydney, 1988), Chap. 4
Williams, J.S., Ridgway, M.C., Conway, M.J., Wong-Leung, J., Zhu, X.F., Petravic, M., Fortuna, F., Ruault, M.-O., Bernas, H., Kinomura, A., Nakano, Y., Hayashi, Y., Nucl. Instrum. Methods Phys. Res. B 178, 33 (2001) CrossRef
Williams, J.S., Zhu, X.F., Ridgway, M.C., Conway, M.J., Williams, B.C., Fortuna, F., Ruault, M.-O., Bernas, H., Appl. Phys. Lett. 77, 4280 (2000) CrossRef
Zhu, X.F., Williams, J.S., Conway, M.J., Ridgway, M.C., Fortuna, F., Ruault, M.-O., Bernas, H., Appl. Phys. Lett. 79, 3416 (2001) CrossRef
M.-O. Ruault, J. Chaumont, H. Bernas, Nucl. Instrum. Methods B 209/210, 351 (1983)
J.F. Ziegler, J. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, NY, 1996), see http://www.srim.org