Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T03:04:25.187Z Has data issue: false hasContentIssue false

Improve electrochemical performance of CeO2 surface modification LiNi0.80Co0.15Al0.05O2 cathode material

Published online by Cambridge University Press:  12 June 2014

Shubiao Xia
Affiliation:
Faculty of Chemistry & Chemical Engineering, Qujing Normal University, Qujing 655011, P.R. China Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
Yingjie Zhang*
Affiliation:
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
Peng Dong
Affiliation:
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
Yannan Zhang
Affiliation:
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P.R. China
*
Get access

Abstract

Lithium ion battery cathode material LiNi0.8Co0.15Al0.05O2 cathode has successfully prepared by co-precipitation. CeO2 surface modification has improved LiNi0.80Co0.15Al0.05O2 electrochemical performance use sol-gel method and subsequent heat treatment at 600 °C for 5 h. Different to other conventional coating material, CeO2 coating layer can not only inhibit the reaction of the electrode and the electrolyte, but also can reduce the impedance of electron transfer due to its high conductivity, and inhibit the production of Ni2+ because of its high oxidation. The surface-modified and pristine LiNi0.80Co0.15Al0.05O2 powders are characterized by XRD, SEM, TEM, XPS, CV and DSC. When CeO2 coating is 0.02% (mole ratio), contrast to pristine NCA, the CeO2-coated NCA cathode exhibits no decrease in its initial specific capacity of 184 mAh g −1 (at 0.2 C) and excellent capacity retention (86% of its initial capacity at 1 C) between 2.75 and 4.3 V after 100 cycles. The results indicate that the CeO2 surface treatment should be an effective way to improve cycle properties due to CeO2 inhibit the electrodes and the electrolyte side effects.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, J.L., Daniel, C., Wood, D., J. Power Sources 196, 2452 (2011)CrossRef
Liu, Z.C. et al., J. Power Sources 196, 10201 (2011)CrossRef
Ju, S.H., Jang, H.C., Kang, Y.C., Electrochim. Acta 52, 7286 (2007)CrossRef
Shubiao, X. et al., Eur. Phys. J. Appl. Phys. 65, 10401 (2014)
Li, Y.W. et al., J. Chinese Rare Earth Soc. 28, 293 (2010)
Hu, G.R. et al., J. Power Sources 198, 258 (2012)CrossRef
Cho, Y.Y. et al., Electrochim. Acta 56, 333 (2010)CrossRef
Sun, Y.K. et al., Electrochem. Soc. 156, 1005 (2009)CrossRef
Liu, H.H. et al., Acta Chim. Sin. 70, 1055 (2012)CrossRef
Cho, Y., Cho, J., J. Electrochem. Soc. 157, A625 (2010)CrossRef
Bak, Y.R. et al., J. New Mater. Electrochem. Syst. 14, 203 (2011)
Yoon, W.S. et al., J. Power Sources 217, 128 (2012)CrossRef
Zhang, Y.J. et al., Chinese Sci. Bull. 57, 4181 (2012)CrossRef
Ha, H.W. et al., Electrochim. Acta 51, 3297 (2006)CrossRef
Kalyani, P., Kalaiselvi, N., Sci. Technol. Adv. Mat. 6, 689 (2005)CrossRef
Wang, M., Wu, F., Su, Y.F., Sci. China Ser. E 39, 809 (2009)CrossRef
Mao, Y., Zhen, Z., Jie, Y., J. Chinese Rare Earth Soc. 24, 759 (2006)
Reddy, M.V., Rao, G.V.S., Chowdari, B.V.R., J. Phys. Chem. C 111, 11712 (2007)CrossRef
Reddy, M.V., et al., J. Power Sources 225, 374 (2013)CrossRef
Lei, J., McLarnon, F., Kostecki, R., J. Phys. Chem. B 109, 952 (2005)CrossRef
Lee, D.J., Scrosati, B., Sun, Y.K., J. Power Sources 196, 7742 (2011)CrossRef
Lee, Y.S. et al., J. Electrochem. Soc. 158, A1354 (2011)CrossRef
Liu, H.L. et al., Surf. Coat. Technol. 219, 88 (2013)CrossRef
Belharouak, I., Lu, W.Q., Vissers, D., Electrochem. Commun. 8, 329 (2006)CrossRef