Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T10:54:25.568Z Has data issue: false hasContentIssue false

First-principle study on the effects of electric field and anisotropic oxygen vacancy on dielectric properties of rutile titanium dioxide

Published online by Cambridge University Press:  07 November 2014

Lei Li
Affiliation:
School of Electronics and Information Engineering, Soochow University, Suzhou 215021, P.R. China
Changfu Xia
Affiliation:
The 26th Institute of China Electronics Technology Group Corporation, Chongqing 400060, P.R. China
Wenshi Li
Affiliation:
School of Electronics and Information Engineering, Soochow University, Suzhou 215021, P.R. China
Aimin Ji
Affiliation:
Institute of Intelligent Structure and System, School of Urban Rail Transportation, Soochow University, Suzhou 215006, P.R. China
Ziou Wang
Affiliation:
School of Electronics and Information Engineering, Soochow University, Suzhou 215021, P.R. China
Canyan Zhu
Affiliation:
Institute of Intelligent Structure and System, School of Urban Rail Transportation, Soochow University, Suzhou 215006, P.R. China
Lijun Zhang
Affiliation:
Institute of Intelligent Structure and System, School of Urban Rail Transportation, Soochow University, Suzhou 215006, P.R. China
Jianfeng Yang
Affiliation:
School of Electronics and Information Engineering, Soochow University, Suzhou 215021, P.R. China
Lingfeng Mao*
Affiliation:
Institute of Intelligent Structure and System, School of Urban Rail Transportation, Soochow University, Suzhou 215006, P.R. China
Get access

Abstract

First principles studies about the influence of electric field and anisotropic oxygen vacancy on the dielectric properties of rutile titanium dioxide (TiO2) are investigated. These results demonstrate that dielectric properties of perfect TiO2 presents dependent on the low electric field that less than 5.2 MV/cm. As a comparison, the dielectric properties of defected TiO2 in (1 1 0) plane and [1 1 0] direction show more sensitive to high electric field. Further more, considering the different positions of oxygen vacancy, the oxygen vacancy locates in (1 1 0) plane of defected TiO2 appears more active to high electric field than it does in [1 1 0] direction. The effect of electric field and oxygen vacancy induce the distorted supercell structure and broken bond between the nearer oxygen atoms and titanium atoms. Moreover, the oxygen vacancy locates in (1 1 0) plane of defected TiO2 can create more potential broken bond. These results account for the difference of dielectric properties in perfect TiO2 and defected TiO2.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, H., McIntyre, P., Saraswat, K.C., Appl. Phys. Lett. 82, 106 (2003)CrossRef
Gavartin, J.L., Ramo, D.M., Shluger, A.L., Bersuker, G., Lee, B.H., Appl. Phys. Lett. 89, 082908 (2006)CrossRef
Hakala, M.H., Foster, A.S., Gavartin, J.L., Havu, P., Puska, M.J., Nieminen, R.M., J. Appl. Phys. 100, 043708 (2006)CrossRef
Maida, O., Fukayama, K., Takahashi, M., Kobayashi, H., Kim, Y., Kim, H., Choi, D., Appl. Phys. Lett. 89, 122112 (2006)CrossRef
Asaduzzaman, A.M., Krüger, P.J., J. Phys. Chem. C 114, 19649 (2010)CrossRef
Fujishima, A., Rao, T.N., Tryk, D.A., J. Photochem. Photobiol. C 1, 1 (2000)CrossRef
Byl, O., Yates, J.T., J. Phys. Chem. B 110, 22966 (2006)CrossRef
Car, R., Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985)CrossRef
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Rasmussen, M.D., Molina, L.M., Hammer, B., J. Chem. Phys. 120, 988 (2004)CrossRef
Delley, B., J. Chem. Phys. 113, 7756 (2000)CrossRef
Janousch, M., Meijer, G.I., Staub, U., Delley, B., Karg, S.F., Andreasson, B.P., Adv. Mater. 19, 2232 (2007)CrossRef
Kim, H.Y., Lee, H.M., Henkelman, G., J. Am. Chem. Soc. 134, 1560 (2012)CrossRef
Chang, J.G., Chen, H.T., Ju, S.P., Chen, H.L., Hwang, C.C., Langmuir 26, 4813 (2010)CrossRef
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976)CrossRef
Henrich, V.E., Dresselhaus, G., Zeiger, H.J., Phys. Rev. Lett. 36, 1335 (1976)CrossRef
Kowalski, P.M., Camellone, M.F., Nair, N.N., Meyer, B., Marx, D., Phys. Rev. Lett. 105, 146405 (2010)CrossRef
Lui, C.H., Li, Z., Mak, K.F., Cappelluti, E., Heinz, T.F., Nat. Phys. 7, 944 (2011)CrossRef
Zhang, Y., Tang, T.T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F., Nature 459, 820 (2009)CrossRef
Mak, K.F., Lui, C.H., Shan, J., Heinz, T.F., Phys. Rev. Lett. 102, 256405 (2009)CrossRef
Avetisyan, A.A., Partoens, B., Peeters, F.M., Phys. Rev. B 81, 115432 (2010)CrossRef
Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J., Nano Lett. 12, 13 (2011)
Drummond, N.D., Zolyomi, V., Fal'Ko, V.I., Phys. Rev. B 85, 075423 (2012)CrossRef
Li, Y., Rotkin, S.V., Ravaioli, U., Nano Lett. 3, 183 (2003)CrossRef
Li, S., Li, J.L., Jiang, Q., Yang, G.W., J. Appl. Phys. 108, 024302 (2010)CrossRef
Mao, L.F., Tan, C., Xu, M., J. Appl. Phys. 88, 6560 (2000)CrossRef
Mao, L.F., Nano. Res. Lett. (2013) 8, 1