Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T13:59:38.214Z Has data issue: false hasContentIssue false

Experimental investigation of noise reduction in an opto-microwave link based on highly-dispersive low-loss fiber

Published online by Cambridge University Press:  22 July 2008

G. Baili
Affiliation:
Physics Department, Thales Research & Technology, RD 128, 91767 Palaiseau Cedex, France
J. Lahitte
Affiliation:
Physics Department, Thales Research & Technology, RD 128, 91767 Palaiseau Cedex, France
M. Alouini
Affiliation:
Physics Department, Thales Research & Technology, RD 128, 91767 Palaiseau Cedex, France
D. Dolfi
Affiliation:
Physics Department, Thales Research & Technology, RD 128, 91767 Palaiseau Cedex, France
J.-P. Huignard
Affiliation:
Physics Department, Thales Research & Technology, RD 128, 91767 Palaiseau Cedex, France
F. Bretenaker*
Affiliation:
Laboratoire Aimé Cotton, CNRS–Université Paris Sud 11, 91405 Orsay Cedex, France
Get access

Abstract

A dispersion compensating fiber exhibiting low losses is used to study the phase to amplitude noise and amplitude to phase noise conversion mechanisms with a very good signal-to-noise ratio over a 20 GHz bandwidth. It is shown that the large frequency noise of semiconductor lasers and the losses in the fiber restrain this technique from efficiently reducing the relative intensity noise to improve the dynamic range of opto-microwave links. However, these properties are proved to be useful to precisely characterize the laser phase noise over a large bandwidth.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bochove, E.J., de Carvalho, E.M., Filho, J.E.R., Opt. Lett. 6, 58 (1981) CrossRef
Chraplyvy, A.R., Tkach, R.W., Buhl, L.L., Alferness, R.C., Electron. Lett. 22, 409 (1986) CrossRef
Meslener, G.J., IEEE J. Quant. Electron. 20, 1208 (1984) CrossRef
Yamamoto, S., Edagawa, N., Taga, H., Yoshida, Y., Wakabayashi, H., J. Lightwave Technol. 8, 1716 (1990) CrossRef
Petermann, K., Electron. Lett. 26, 2097 (1990) CrossRef
Wang, J., Petermann, K., J. Lightwave Technol. 10, 96 (1992) CrossRef
Ribeiro, R.F.S., da Rocha, J.R.F., Cartaxo, A.V.T., IEEE Photon. Technol. Lett. 7, 1510 (1995) CrossRef
Marshall, W.K., Paslaski, J., Yariv, A., Appl. Phys. Lett. 68, 2496 (1996) CrossRef
McAdams, M., Peral, E., Provenzano, D., Marshall, W.K., Yariv, A., Appl. Phys. Lett. 71, 879 (1997) CrossRef
McAdams, M., Provenzano, D., Peral, E., Marshall, W.K., Yariv, A., Appl. Phys. Lett. 71, 3341 (1997) CrossRef
Bibey, M.B., Debrogies, F., Krakowski, M., Mongardien, D., IEEE Trans. Microw. Theory Tech. 47, 2257 (1999) CrossRef
Cartaxo, A.V.T., Wedding, B., Idler, W., J. Lightwave Technol. 16, 1187 (1998) CrossRef
Peral, E., Yariv, A., IEEE J. Quant. Electron. 35, 1185 (1999) CrossRef
Musha, M., Sato, Y., Nakagawa, K., Ueda, K., Ueda, A., Ishiguro, M., Appl. Phys. B 82, 555 (2006) CrossRef
Gallion, P.B., Debarge, G., IEEE J. Quant. Electron. 20, 343 (1984) CrossRef
Piazzolla, S., Spano, P., Tamburrini, M., Appl. Phys. Lett. 41, 695 (1982) CrossRef
Kikuchi, K., Okoshi, T., IEEE J. Quant. Electron. 21, 1814 (1985) CrossRef
Cartaxo, A.V.T., Morgado, J.A.P., J. Lightwave Technol. 17, 86 (1999) CrossRef
G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd edn. (Van Nostrand, 1993)
Agrawal, G.P., IEEE Photon. Technol. Lett. 1, 212 (1989) CrossRef
Nakajima, H., Bouley, J.C., Electron. Lett. 27, 1841 (1991) CrossRef
Marshall, W.K., Crosignani, B., Yariv, A., Opt. Lett. 25, 165 (2000) CrossRef
Lelarge, F., Dagens, B., Renaudier, J., Brenot, R., Accard, A., van Dijk, F., Make, D., Gouezigou, O.L., Provost, J.G., Poingt, F. et al., IEEE J. Sel. Topics Quant. Electron. 13, 111 (2007) CrossRef
Mi, Z., Bhattacharya, P., IEEE J. Quant. Electron. 43, 363 (2007) CrossRef