Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T23:25:13.129Z Has data issue: false hasContentIssue false

Evaluation of luminances and yields for red, green, and blue organic light emitting diodes

Published online by Cambridge University Press:  14 April 2005

P. Taillepierre
Affiliation:
U.M.O.P., CNRS FRE 2701, Faculté des Sciences et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
R. Antony
Affiliation:
U.M.O.P., CNRS FRE 2701, Faculté des Sciences et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
A. Moliton*
Affiliation:
U.M.O.P., CNRS FRE 2701, Faculté des Sciences et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
Get access

Abstract

For red, green and blue OLEDs that emit for each of them in a wide spectral range ($\Delta \lambda \approx 200$ nm), we calculate the luminous luminance, the energetic luminance and the various yields in the pseudo-monochromatic hypothesis (ideal source generally considered), and we compare with a calculation in relation with a polychromatic system (real source). Finally, we demonstrate that the values of the energetic luminance and of the energetic or quantum yield are practically unchanged whatever the hypothesis; on the contrary, in the simplified case of the pseudo-monochromatic source, the luminous luminance and the luminous yield of a green organic diode are overvalued in relation to the polychromatic real case, whereas for a blue or a red organic diode these parameters (calculated in the pseudo-monochromatic hypothesis) are undervalued. The error is all the more great since the OLED emission is far away from the maximum value of the photoptical eye response.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tang, C.W., VanSlyke, S.A., Appl. Phys. Lett. 61, 913 (1987) CrossRef
Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K.D., Friend, R.H., Burn, P.L., Holmes, A.B., Nature 347, 539 (1990) CrossRef
V. Dentan, M. Vergnolle, H. Facoetti, G. Vériot, C.R. Acad. Sci. Paris, t. 1, Sér. IV, 425 (2000)
Burrows, P.E., Forrest, S.R., Thomson, M.E., Curr. Opin. Solid St. M. 2, 236 (1997) CrossRef
S. Miyata, S. Nalwa, Organic electroluminescent materials and devices (Gordon and Breach, 1997)
T.P. Nguyen, P. Molinie, P. Destruel, Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H.S. Nalwa (Academic Press, 2001), Vol. 1, Chap. 1
A. Moliton, Molecular and Polymer Optoelectronics: from concepts to devices, Springer Series in Optical Sciences (Springer, New York (in press)) or A. Moliton, Optoélectronique moléculaire et polymère : des concepts aux composants (Springer, Paris, 2003)
A. Moliton, B. Lucas, S. Berthon, W. Rammal, Philos. Mag. PM 3 09/552T (2005) in press
Antony, R., Moliton, A., Ratier, B., Moussant, C., Eur. Phys. J. Appl. Phys. 4, 45 (1998) CrossRef
F. Desvigne, Rayonnements optiques (Masson, Paris, 1991)
V. Hartel, E. Haseloff, G. Jahn, G. Suhrke, Optoelectronics theory and practice, edited by A. Chappell (McGraw-Hill book Compagny, 1978)
Greenham, N.C., Friend, R.H., Bradley, D.D.C., Adv. Mater. 6, 491 (1994) CrossRef