Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-06T03:17:51.653Z Has data issue: false hasContentIssue false

Ellipsometric investigation of porous silicon layers for the design of a DBR

Published online by Cambridge University Press:  19 June 2008

A. Bardaoui*
Affiliation:
Laboratoire de Photovoltaïque, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l'énergie, BP 95 Hammam-Lif 2050, Tunisia
L. Boudaya
Affiliation:
Laboratoire de Photovoltaïque, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l'énergie, BP 95 Hammam-Lif 2050, Tunisia
T. Abdellaoui
Affiliation:
Laboratoire de Photovoltaïque, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l'énergie, BP 95 Hammam-Lif 2050, Tunisia
N. Ben Sédrine
Affiliation:
Laboratoire de Photovoltaïque, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l'énergie, BP 95 Hammam-Lif 2050, Tunisia
M. Lajnef
Affiliation:
Laboratoire de Photovoltaïque, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l'énergie, BP 95 Hammam-Lif 2050, Tunisia
R. Chtourou
Affiliation:
Laboratoire de Photovoltaïque, des Semiconducteurs et des Nanostructures, Centre de Recherche et des Technologies de l'énergie, BP 95 Hammam-Lif 2050, Tunisia
Get access

Abstract

Porous silicon layers (PSL) were fabricated by electrochemical etching and investigated by spectroscopic ellipsometry (SE) in the energy range 0.6−5 eV. Within the effective medium approximation (EMA) and through an optical model consisting of a mixture of void and crystalline silicon (cSi), we were able to determine the porosity (void concentration) and the thicknesses of the PSL. The PSL were divided into several sublayers in order to obtain the best agreement between measured and simulated spectra. Once the etching parameters have been controlled and by choosing the appropriate conditions, it was possible to design a distributed Bragg reflector (DBR) with a high reflectivity band centered at 800 nm. This DBR consists on stacks of alternate PSL having two different refractive indices.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Ulhir, Bell System Technology Journal 35, 333 (1956)
H.A. MacLeod, Thin-film Optical Filters (Adam Hilger, London, 1969)
Pavesi, L., La Rivista del Nuovo Cimento 20, 1 (1997) CrossRef
Arrand, H.F., Benson, T.M., Sewell, P., Loni, A., Bozeat, R.J., Arens-Fischer, R., Krüger, M., Thönissen, M., Lüth, H., IEEE J. Selected Topic. Quant. Electron. 4, 975 (1998) CrossRef
Chan, S., Horner, S.R., Miller, B.L., Fauchet, P.M., J. Am. Chem. Soc. 123, 11797 (2001) CrossRef
Sung, Gi Kim, Sungsoo Kim, Young Chun Ko, Sungdong Cho, Honglae Sohn, Colloids Surf. A: Physicochem. Eng. Aspects 313-314, 398 (2008)
L.T. Canham, M.P. Stewart, J.M. Buriak, C.L. Reeves, M. Anderson, E.K. Squire, P. Allcock, P.A. Snow, Phys. Stat. Sol. 182, 521 (2000)
V. Lehmann, R. Stengl, H. Reisinger, R. Detemple, W. Theis, Appl. Phys. Lett. 78, 589 (2001)
L.H. Qin, Y.D. Zheng, R. Zhang, S.L. Gu, H.T. Shi, D. Feng, Appl. Phys. A 58, 163 (1994)
A. Zunger, L.-W. Wang, Appl. Surf. Sci. 102, 350 (1996)
D.A.G. Bruggemann, Ann. Phys. 24, 636 (1935)
S. Billat, M. Thönissen, R. Arens-Fischer, M.G. Berger, M. Krüger, H. Lüth, W. Theiss, S. Hillbrich, P. Grosse, G. Lerondel, U. Frotscher, Thin Solid Films 297, 92 (1997)
Polgár, O., Petrik, P., Lohner, T., Fried, M., Appl. Surf. Sci. 253, 57 (2006) CrossRef
Aspnes, D.E., Theeten, J.B., Hottier, F., Phys. Rev. B 20, 3292 (1979) CrossRef