Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T07:28:44.607Z Has data issue: false hasContentIssue false

Electronic and magnetic structures of CrSb compounds investigated by first principles, mean field and series expansion calculations

Published online by Cambridge University Press:  12 August 2014

Rachid Masrour*
Affiliation:
Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, BP 63, 46000 Safi, Morocco LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, 10090 Rabat, Morocco
El Kebir Hlil
Affiliation:
Institut Néel, CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France
Mohamed Hamedoun
Affiliation:
Institute of Nanomaterials and Nanotechnologies, MAScIR, 10100 Rabat, Morocco
Abdelilah Benyoussef
Affiliation:
LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, 10090 Rabat, Morocco Institute of Nanomaterials and Nanotechnologies, MAScIR, 10100 Rabat, Morocco Hassan II Academy of Science and Technology, 10100 Rabat, Morocco
Get access

Abstract

Self-consistent ab initio calculations, based on the density functional theory (DFT) approach and using the full potential linear augmented plane wave (FLAPW) method, are performed to investigate both the electronic and magnetic properties of CrSb compounds. Spin-polarised calculations, including the spin-orbit interaction, are used to determine the energy of the ferromagnetic (FM) and antiferromagnetic (AFM) states of CrSb. Magnetic moments considered along the (0 0 1) axis are computed. Data obtained from ab initio calculations are used as input for high temperature series expansions (HTSEs) to compute other magnetic parameters. The exchange interactions between the magnetic atoms Cr-Cr in CrSb are studied using the mean field theory. The high temperature series expansions (HTSEs) of the magnetic susceptibility are given up to tenth order (x = J1(Cr-Cr)/kBT). The Néel temperature TN is obtained by HTSEs of the magnetic susceptibility combined with the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is deducedas well.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Katsnelson, M.I., Irkhin, V.Yu., Chioncel, L., Lichtenstein, A.I., de Groot, R.A., Rev. Mod. Phys. 80, 315 (2008)CrossRef
Felser, C., Fecher, G.H., Balke, B., Ang. Chem. Int. Ed. 46, 668 (2007)CrossRef
Zhao, J.H., Matsukara, F., Takamura, K., Abe, E., Chiba, D., Ohno, H., Appl. Phys. Lett. 79, 2776 (2001)CrossRef
Li, S., et al., J. Phys. D 41, 175004 (2008)CrossRef
Galanakis, I., Mavropoulos, P., Phys. Rev. B 67, 104417 (2003)CrossRef
Liu, B.-G., Phys. Rev. B 67, 172411 (2003)CrossRef
Pask, J.E., Yang, L.H., Fong, C.Y., Pickett, W.E., Dag, S., Phys. Rev. B 67, 224420 (2003)CrossRef
Kusakabe, K., Geshi, M., Tsukamoto, H., Suzuki, N., J. Phys.: Condens. Matter 16, S5639 (2004)
Sieberer, M., Redinger, J., Khmelevskyi, S., Mohn, P., Phys. Rev. B 73, 024404 (2006)CrossRef
Volnianska, O., Boguslawski, P., Phys. Rev. B 75, 224418 (2007)CrossRef
Gao, G.-Y., Chen, J., Yaoa, K.-L., Phys. Lett. A 375, 4053 (2011)CrossRef
Bose, S.K., Kudrnovský, J., Phys. Rev. B 81, 054446 (2010)CrossRef
Galanakis, I., Mavropoulos, P., Phys. Rev. B 67, 104417 (2003)CrossRef
Galanakis, I., Ibid. 66, 012406 (2002)
Ono, K., Okabayashi, J., Mizuguchi, M., Oshima, M., Fujimori, A., Akinaga, H., J. Appl. Phys. 91, 8088 (2002)CrossRef
Baker, G.A., Graves-Morris, P., in Padé Approximants (Addison-Wesley, London, 1981)Google Scholar
Blaha, P., Schwartz, K., Sorantin, P., Trikey, S.B., Comput. Phys. Commun. 59, 399 (1990)CrossRef
Willis, B.T.M., Acta Crystall. 6, 425 (1953)CrossRef
Snow, A.I., Rev. Mod. Phys. 25, 127 (1953)CrossRef
Holland, W.E., Brown, H.A., Phys. Stat. Sol. A 10, 249 (1972)CrossRef
Stanley, H.E., Phys. Rev. 158, 537 (1967)CrossRef
Stanley, H.E., Kaplan, T.A., Phys. Rev. Lett. 16, 981 (1966)CrossRef
McGuire, T.R., Bull. Am. Phys. Soc. Ser. II 8, 55 (1963)
Abe, S., Kaneko, T., Ohashi, M., Yoshida, H., Kamigaki, K., J. Phys. Soc. Jpn 53, 2703 (1984)CrossRef
Kuhn, G., Polesya, S., Mankovsky, S., Minar, J., Ebert, H., Regus, M., Bensch, W., J. Phys.: Condens. Matter 24, 306005 (2012)
Kahal, L., Zaoui, A., Ferhat, M., J. Appl. Phys. 101, 093912 (2007)CrossRef
Adachi, B.K., J. Phys. Soc. Jpn 16, 2187 (1961)CrossRef
Polesya, S., Kuhn, G., Mankovsky, S., Ebert, H., Regus, M., Bensch, W., J. Phys.: Condens. Matter 24, 036004 (2012)
Radhakrishna, P., Cable, J.W., Phys. Rev. B 54, 11940 (1996)CrossRef
Kosterlitz, J.M., Thouless, D.J., J. Phys. C 5, L124 (1973)CrossRef
George, A., Baker, Jr., Nickel, B.G., Meiron, D.I., Phys. Rev. B 17, 1365 (1978)
Carr, C.E.H.Y., Phys. Rev. Lett. 39, 1558 (1977)
Ferrer, M., Moore, M.A., Wortis, M., Phys. Rev. B 8, 5205 (1973)CrossRef
Swendsen, R.H., Ibid. 27, 391 (1983)
Wilson, K.G., Phys. Rev. Lett. 28, 548 (1972)CrossRef
Sardar, S., Chakraborty, K.G., Physica A 238, 317 (1997)CrossRef
Van Dyke, J.P., Camp, W.J., Phys. Rev. B 9, 3121 (1974)CrossRef
Griffiths, R.B., Phys. Rev. 158, 557 (1967)CrossRef