Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-04T22:01:58.405Z Has data issue: false hasContentIssue false

Electrochemical characterisation of fuel cell stack during cold start

Published online by Cambridge University Press:  19 May 2011

F. Harel*
Affiliation:
FC LAB, Rue Thierry Mieg, 90010 Belfort Cedex, France INRETS, The French National Institute for Transport and Safety Research, France
S. Bégot
Affiliation:
FC LAB, Rue Thierry Mieg, 90010 Belfort Cedex, France FEMTO-ST (CNRS-UMR 6174), ENISYS department, UTBM-UFC, France
S. Wasterlain
Affiliation:
FC LAB, Rue Thierry Mieg, 90010 Belfort Cedex, France FEMTO-ST (CNRS-UMR 6174), ENISYS department, UTBM-UFC, France
D. Candusso
Affiliation:
FC LAB, Rue Thierry Mieg, 90010 Belfort Cedex, France INRETS, The French National Institute for Transport and Safety Research, France
Get access

Abstract

Fuel cell self start at negative temperature conditions is not an easy task due to the water produced by the reduction of oxygen at the cathode. This amount of water can turn into ice and block the reaction before the temperature inside the fuel cell reaches positive values. The mechanism of the physical process which leads to oxidant starvation phenomena when ice appears is not yet well identified. In order to obtain a deeper understanding of this problem, the article presents some experimental investigations conducted on a short fuel cell stack. These experiments simulate vehicle technology operated in cold start conditions not with the primary objective to reach a successful and rapid start-up but much rather to characterise and understand the cold start phenomena until starvation occurs. A number of polarisation curves, electrochemical spectroscopy and cyclic voltammetry measurements are done on the stack before, after and also during the cold starts experiments. It is observed that the process of drying and cooling down prior to cold start have a great impact on the electrochemical cathode area. The results obtained show the evolution of the stack behaviour during the low temperature operation with a slow production of frost. The consequence on the individual cells in terms of inhomogeneous degradation is highlighted.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahluwalia, R.K., Wang, X., J. Power Sources 162, 502 (2006) CrossRef
A.A. Pesaran, G.H. Kim, J.D. Gonder, Milestone Report NREL/MP-540-38760 PEM Fuel Cell Freeze and Rapid Startup Investigation, 2005
Pineri, M., Gebel, G., Davies, R.J., Diat, O., J. Power Sources 172, 587 (2007) CrossRef
Pinton, E., Fourneron, Y., Rosini, S., Antoni, L., J. Power Sources 186, 80 (2009) CrossRef
Chacko, C., Ramasamy, R., Kim, S., Khandelwal, M., Mench, M., J. Electrochem. Soc. 155, 1145 (2008) CrossRef
Tajiri, K., Tabuchi, Y., Kagami, F., Takahashi, S., Yoshizawa, K., Chao-Yang, W., J. Power Sources 165, 279 (2007) CrossRef
Tajiri, K., Tabuchi, T., Wang, C.-Y., J. Electrochem. Soc. 154, 147 (2007) CrossRef
Li, J., Lee, S., Roberts, J., Electrochim. Acta 53, 5391 (2008) CrossRef
Hou, J., Yi, B., Yu, H., Hao, L., Song, W., Fu, Y., Shao, Z., Int. J. Hydr. Energy 32, 4503 (2007) CrossRef
Hou, J., Yu, H., Zhang, S., Sun, S., Wang, H., Yi, B., Ming, P., J. Power Sources 162, 513 (2006) CrossRef
Cho, E.A., Ko, J.J., Ha, H.Y., Hong, S.A., Lee, K.Y., Lim, T.W., Oh, I.H., J. Electrochem. Soc. 150, 1667 (2003) CrossRef
Oszcipok, M., Riemann, D., Kronenwett, U., Kreideweis, M., Zedda, M., J. Power Sources 145, 407 (2005) CrossRef
Wang, H., Hou, J., Yu, H., Sun, S., J. Power Sources 165, 287 (2007) CrossRef
Ge, S., Wang, C.Y., J. Electrochem. Soc. 154, 1399 (2007) CrossRef
Bégot, S., Harel, F., Kauffmann, J.M., Fuel Cells Fund. Syst. 2, 138 (2008) CrossRef
Schießwohl, E., von Unwerth, T., Seyfried, F., Brüggemann, D., J. Power Sources 193, 107 (2009) CrossRef
Oszcipok, M., Zedda, M., Riemann, D., Geckeler, D., J. Power Sources 154, 404 (2006) CrossRef
D. Hissel, M.C. Péra, D. Candusso, F. Harel, S. Bégot, Characterisation of polymer electrolyte fuel cells for embedded generators – Test bench design and methodology, in Advances in Fuel Cells, Research signpost, edited by X.W. Zhang (2005), pp. 127–148
S. Bégot, F. Harel, J.M. Kauffmann, M.C. Péra, Freeze-thaw ageing effects on PEM fuel cells, FDFC Conf., Nancy, 2008
U. Retter, H. Lohse, Electrochemical impedance spectroscopie, in Electroanalytical Methods – Guide to Experiments and Applications, edited by F. Scholz (2002), pp. 149–166
Kim, H.-T., Song, K.-Y., Reshetenko, T.V., Han, S.-I., Kim, T.-Y., Cho, S.-Y., Min, M.-K., Chai, G.-S., Shin, S.-C., J. Power Sources 193, 515 (2009) CrossRef
Jiang, R., Kunz, H.R., Fenton, J.M., J. Power Sources 150, 120 (2005) CrossRef
Wasterlain, S., Candusso, D., Hissel, D., Harel, F., Bergman, P., Menard, P., Anwar, M., J. Power Sources 195, 984 (2010) CrossRef
Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., Ogumi, Z., Electrochim. Acta 51, 5746 (2006) CrossRef
Jiao, K., Li, X., Electrochim. Acta 54, 6876 (2009) CrossRef
Jiang, F., Wang, C.-Y., Chen, K.-S., J. Electrochem. Soc. 157, 342 (2010) CrossRef