Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T09:00:28.782Z Has data issue: false hasContentIssue false

Electrical characterizations of a pentacene-based thin film transistor under optical excitation

Published online by Cambridge University Press:  07 December 2007

A. El Amrani
Affiliation:
Université de Limoges, Faculté des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Département MINACOM, 123 avenue Albert Thomas, 87060 Limoges, France
B. Lucas*
Affiliation:
Université de Limoges, Faculté des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Département MINACOM, 123 avenue Albert Thomas, 87060 Limoges, France
A. Moliton
Affiliation:
Université de Limoges, Faculté des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Département MINACOM, 123 avenue Albert Thomas, 87060 Limoges, France
Get access

Abstract

Light effect on electrical properties of a pentacene-based transistor was studied. We showed that under optical excitation, the phenomenon of photoconductivity can modify both carrier density and mobility; these changes depend on the wavelength, on the carrier photogeneration rate and on the material absorption coefficient. At first, we examined structural, optical and electrical properties of pentacene films; a thickness of 50 nm is the good compromise to obtain optimal performances. Then we observed the effect of illumination on the drain current in the accumulation regime: at 365 nm, we obtained a maximum ratio of photocurrent to dark current (Idsillumination/Idsdark) of about 2 × 103 when the gate is turned off, mobility and threshold voltage values around 0.02 cm2 V−1 s−1 and 7.5 V respectively. Moreover the dynamics study (off-state) showed sufficiently fast response times with large current gains to envisage applications in the area of light activated memory components. Finally, we examined the performances of a new component based on the coupling of an organic light emitting diode (with an emission peak at 550 nm) as an input unit with an organic transistor as an output unit. This last study enabled to underscore an increase in mobility without modifying the carrier density for low carrier photogeneration rates.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reyes-Reyes, M., Kim, K., Carroll, D.L., Appl. Phys. Lett. 87, 083506 (2005) CrossRef
Ma, M., C.Yang, X. Gong, K. Lee, A. Heeger, Adv. Func. Mater. 15, 1617 (2005) CrossRef
Xue, J., Rand, B.P., Uchida, S., Forrest, S.R., Adv. Mater. 17, 66 (2005) CrossRef
Horowitz, G., J. Mater. Res. 19, 1946 (2004) CrossRef
G.H. Gelinck, H.E.A. Huitema, E.V. Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. Van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.-H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. Van Rens, D.M. Leeuw, Nature Mater. 3, 106 ( 2004)
Klauk, H., Halik, M., Zschieschang, U., Eder, F., Rohde, D., Schmid, G., Dehm, C., IEEE Trans. Electron. Devices 52, 618 (2005) CrossRef
T. Chuman, S. Ohta, S. Miyaguchi, H. Satoh, T. Tanabe, Y. Okuda, M. Tsuchida, 2004 SID Symp. Dig. 16, 45 (2004)
Rogers, J.A., Bao, Z., J. Polym. Sci. Part A: Polym. Chem. 40, 3327 (2002) CrossRef
Hamilton, M.C., Martin, S., Kanicki, J., IEEE Trans. Electron Devices 51, 877 (2004) CrossRef
Noh, Y.-Y., Yase, K., Kim, D.-Y., J. Appl. Phys. 98, 074505 (2005) CrossRef
Y Hu, G. Dong, C. Liu, L. Wang, Y. Qiu, Appl. Phys. Lett. 89, 072108 (2006) CrossRef
Marjanovi, N. ae , B. Singh, G. Dennler, S. Günes, H. Neugebauer, N.S. Sariciftci, R. Schwödiauer, S. Bauer, Org. Electron. 7, 188 (2006) CrossRef
B. Lucas, W. Rammal, A. Moliton, Eur. Phys. J. Appl. Phys. 34 179 (2006)
R.-H. Bube, Photoelectronic propreties of semiconductors (Cambridge University Press, 1992)
Deman, A.L., Tardy, J., Mat. Sci. Eng. C26, 421 (2006) CrossRef
Knipp, D., Street, R.A, Volkel, A.R., Appl. Phys. Lett. 82, 22 (2003) CrossRef
M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Appl. Phys. 81, 268 (2002)
Langford, J.I., Wilson, A.J.C., J. Appl. Cryst. Lett. 11, 102 (1978) CrossRef
Tauc, J., Menthe, A., J. Non-Cryst. Sol. 8–10, 569 (1972) CrossRef
Chu, C.W., Li, S.H., Chen, C.W., Shrotriya, V., Yang, Y., Appl. Phys. Lett. 86, 193508 (2005) CrossRef
Kim, C., Bang, K., An, I., Kang, C.J., Jeon, D., Curr. Appl. Phys. 6, 925 (2006) CrossRef
Amy, F., Chan, C., Kahn, A., Org. Electron. 6, 85 (2005) CrossRef
Horowitz, G., J. Matter. Chem. 9, 2001 (1999) CrossRef
Kotowski, D., Kutrzeba-Kotowska, B., Obarowska, M., Signerski, R., Godlewski, J., Org. Electron. 6, 193 (2005) CrossRef
Dutta, S., Narayan, K.S., Appl. Phys. Lett. 87, 193505 (2005) CrossRef
Hamilton, M.C., Kanicki, J., IEEE J. Select. Topics Quantum Electron. 10, 840 (2004) CrossRef
Vollmer, A., Jurchescu, O.D., Arfaoui, I., Salzmann, I., Palstra, T.T.M., Rudolf, P., Niemax, J., Pflaum, J., Rabe, J.P., Koch, N., Eur. Phys. J. E 17, 339 (2005) CrossRef
Kim, W.J, Koo, W.H., Jo, S.J., Kim, C.S., Baik, H.K., Hwang, D.K., Lee, K., Kim, J.H., Im, S., Electrochem. Solid-State Lett. 9, 251 (2006) CrossRef
Antony, R., Moliton, A., Lucas, B., Appl. Phys. A 70, 185 (2000) CrossRef
Kruangam, D., Sujaridchai, T., Chirakawikul, K., Ratwises, B., Panyakeow, S., J. Non-Cryst. Sol. 227, 1146 (1998) CrossRef
Dong, G., Hu, Y., Jiang, C., Wang, L., Qiu, Y., Appl. Phys. Lett. 88, 051110 (2006) CrossRef
Singh, P.K., Singh, S.N., Kishore, R., Appl. Phys. Lett. 48, 127 (1986) CrossRef
Singh, S.N., Gandotra, R., Singh, P.K., Chakravarty, B.C., Bull. Mater. Sci. 28, 317 (2005) CrossRef
Zukawa, T., Naka, S., Okada, H., Onnagawa, H., J. Appl. Phys. 91, 1171 (2002) CrossRef