Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T14:23:14.048Z Has data issue: false hasContentIssue false

Efficiency of Lamb modes in the spatial and frequency acoustic signatures for a thin layer by the resonance theory

Published online by Cambridge University Press:  15 May 2000

A. Ramdani*
Affiliation:
Laboratoire des Sciences des Matériaux, Département de Physique, Faculté des Sciences, route Ben Maâchou, 24000 El Jadida, Morocco
F. Augereau
Affiliation:
Laboratoire d'Analyse des Interfaces et de Nanophysique (UPRESA 5011), Case courrier 82, Université Montpellier II, place Eugène Bataillon, 34095 Montpellier Cedex 5, France
M. Sidki
Affiliation:
Laboratoire des Sciences des Matériaux, Département de Physique, Faculté des Sciences, route Ben Maâchou, 24000 El Jadida, Morocco
G. Despaux
Affiliation:
Laboratoire d'Analyse des Interfaces et de Nanophysique (UPRESA 5011), Case courrier 82, Université Montpellier II, place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

To determine the mechanical properties of materials in thin layers by the measure of Lamb waves velocities, the acoustic microscopy can be used in two different manners: by the spatial acoustic signature V(z), and, less widespread, by the frequency acoustic signature V(f). However, in this study, we show that for each of these signatures V(z) or V(f), there are complementary domains of use in which the detection and the efficiency of Lamb modes are optimized. A specific formalism permits to foresee each of these domains where the efficiency is optimized.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Da Fonseca, R.J.M., Ferdj-Allah, L., Despaux, G., Boudour, A., Robert, L., Attal, J., Adv. Mater. 5, 508 (1993). CrossRef
A. Briggs, Acoustic Microscopy (Clarendon Press, Oxford, 1992).
Ramdani, A., Augereau, F., Despaux, G., J. Phys. III France 6, 571 (1996). CrossRef
A. Atalar, H. Koymen, L. Degertekin, IEEE Ultrason. Symp. 359 (1990).
Fiorito, R., Madigosky, W., Überall, H., J. Acoust. Soc. Am. 66, 1857 (1979). CrossRef
Atalar, A., J. Appl. Phys. 50, 8237 (1979). CrossRef
Sheppard, C.J.R., Wilson, T., Appl. Phys. Lett. 38, 858 (1981). CrossRef
Kushibiki, J., Okhubo, A., Chubachi, N., Electron. Lett. 18, 663 (1982). CrossRef
I.A. Viktorov, Rayleigh and Lamb waves (Plenum Press, New York, 1967).
Merkulov, L.C., Sov. Phys. Acoust. 10, 169 (1964).
Junru, Wu, Zhemin Zhu, J. Acoust. Soc. Am. 91, 861 (1992).
Worlton, D.C., J. Appl. Phys. 32, 967 (1961). CrossRef
T.R. Meeker, A.H. Meitzler, in Physical Acoustic, edited by W.P. Mason (Academic Press, 1969).
L.M. Brekhovskikh, Waves in layered media, 2nd edn. (Academic Press, 1980).
Fiorito, R., Madigosky, W., Überall, H., J. Acoust. Soc. Am. 77, 489 (1985). CrossRef
Madigosky, W., Fiorito, R., J. Acoust. Soc. Am. 65, 1105 (1979). CrossRef
Delestre, P., Izbicki, J.L., Maze, G., Ripoche, J., Acustica 61, 83 (1986).
Pilarski, A., Arch. Acoust. 7, 61 (1982).
Pilarski, A., Mater. Evaluation 43, 765 (1985).