Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T14:57:16.517Z Has data issue: false hasContentIssue false

Effect of voltage waveform on dielectric barrier discharge ozone production efficiency

Published online by Cambridge University Press:  01 March 2012

N. Mericam-Bourdet
Affiliation:
EDF R&D, EPI Dpt, Les Renardières, 77250 Moret-sur-Loing, France SUPELEC – E3S Département Electrotechnique et Systèmes d’Energie, 91192 Gif-sur-Yvette Cedex, France
M.J. Kirkpatrick
Affiliation:
SUPELEC – E3S Département Electrotechnique et Systèmes d’Energie, 91192 Gif-sur-Yvette Cedex, France
F. Tuvache
Affiliation:
EDF R&D, EPI Dpt, Les Renardières, 77250 Moret-sur-Loing, France
D. Frochot
Affiliation:
EDF R&D, EPI Dpt, Les Renardières, 77250 Moret-sur-Loing, France
E. Odic*
Affiliation:
SUPELEC – E3S Département Electrotechnique et Systèmes d’Energie, 91192 Gif-sur-Yvette Cedex, France
Get access

Abstract

Dielectric barrier discharges (DBDs) are commonly used for gas effluent cleanup and ozone generation. For these applications, the energy efficiency of the discharge is a major concern. This paper reports on investigations carried out on the voltage shape applied to DBD reactor electrodes, aiming to evaluate a possible energy efficiency improvement for ozone production. Two DBD reactor geometries were used: pin-to-pin and cylinder-to-cylinder, both driven either by a bi-directional power supply (voltage rise rate 1 kV/μs) or by a pulsed power supply (voltage rise rate 1 kV/ns). Ozone formed in dry air was measured at the reactor outlet. Special attention was paid to discharge input power evaluation using different methods including instantaneous current-voltage product and transferred charge-applied voltage figures. The charge transferred by the discharges was also correlated to the ozone production. It is shown that, in the case of the DBD reactors under investigation, the applied voltage shape has no influence on the ozone production efficiency. For the considered voltage rise rate, the charge deposit on the dielectric inserted inside the discharge gap is the important factor (as opposed to the voltage shape) governing the efficiency of the discharge – it does this by tailoring the duration of the current peak into the tens of nanosecond range.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McAdams, R., J. Phys. D: Appl. Phys. 34, 2810 (2001)CrossRef
Pasquiers, S., Eur. Phys. J. Appl. Phys. 28, 319 (2004)CrossRef
Rudolph, R., Francke, K.-P., Miessner, H., Plasma Chem. Plasma Process. 22, 401 (2002)CrossRef
Kogelschatz, U., Pure Appl. Chem. 62, 1667 (1990)CrossRef
Beleznai, Sz., Mihajlik, G., Maros, I., Balazs, L., Richter, P., J. Phys. D: Appl. Phys. 41, 115202 (2008)CrossRef
Wagner, H.-E., Brandenburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P., Behnke, J.F., Vacuum 71, 417 (2003)CrossRef
Massines, F., Gouda, G., J. Phys. D: Appl. Phys. 31, 3411 (1998)CrossRef
Teranishi, K., Shinomura, N., Suzuki, S., Itoh, H., Plasma Sources Sci. Technol. 18, 045011 (2009)CrossRef
Pietsch, G.J., Gibalov, V.I., Pure Appl. Chem. 70, 1169 (1998)CrossRef
Chen, H.L., Lee, H.M., Chen, S.H., Wei, T.C., Chang, M.B., Plasma Sources Sci. Technol. 19, 055009 (2010)CrossRef
Hulka, L., Pietsch, G.J., Plasma Processes Polym. 2, 222 (2005)CrossRef
Jani, M.A., Toda, K., Takaki, K., Fujiwara, T., J. Phys. D: Appl. Phys. 33, 3078 (2000)CrossRef
Takaki, K., Hatanaka, Y., Arima, K., Mukaigawa, S., Fujiwara, T., Vacuum 83, 128 (2009)CrossRef
Osawa, N., Kaga, H., Fukuda, Y., Harada, S., Yoshioka, Y., Hanaoka, R., Eur. Phys. J. Appl. Phys. 55, 13802 (2011)CrossRef
Masuda, S., Sato, M., Seki, T., IEEE Trans. Ind. Appl. 22, 886 (1986)CrossRef
Wang, D., Matsumoto, T., Namihira, T., Akiyama, H., J. Adv. Oxid. Technol. 13, 71 (2010)
Liu, S., Neiger, M., J. Phys. D: Appl. Phys. 34, 1632 (2001)CrossRef
Salge, J., Braumann, P., in Proc. of 4th Int. Symp. on Plasma Chemistry, Zurich, 1979, pp. 735741
Williamson, J.M., Trump, D.D., Bletzinger, P., Ganguly, B.N., J. Phys. D: Appl. Phys. 39, 4400 (2006)CrossRef
Okazaki, K., Nozaki, T., Pure Appl. Chem. 74, 447 (2002)CrossRef
Wong, H., Li, D., Wu, Y., Li, J., Li, G., J. Electrostat. 67, 547 (2009)CrossRef
Yao, S.L., Suzuki, E., Meng, N., Nakayama, A., Energy Fuels 15, 1300 (2001)CrossRef
Korzekwa, R., Rosocha, L., Falkenstein, Z., in Proc. of 11th IEEE International Pulsed Power Conference, Baltimore, MD, 1997, p. 7
Odic, E., Dhainault, M., Petit, M., Goldman, A., Goldman, M., Karimi, C., J. Adv. Oxid. Technol. 6, 41 (2003)
Mfopara, A., Kirkpatrick, M.J., Odic, E., Plasma Chem. Plasma Process. 29, 91 (2009)CrossRef
Parissi, L., Odic, E., Goldman, A., Goldman, M., Borra, J.-P., Chapter 11: Temperature effects on plasma chemical reactions. Application to VOC removal from flue gases by dielectric barrier discharges, in Electrical Discharges for Environmental Purposes: Fundamentals and Applications, edited by Van Veldhuizen, E.M. (Nova Science Publishers, New York, 2000), p. 279 Google Scholar
Stefanovic, I., Bibinov, N.K., Deryugin, A.A., Vinogradov, I.P., Napartovich, A.P., Wiesemann, K., Plasma Sources Sci. Technol. 10, 406 (2001)CrossRef
Hadj-Ziane, S., Held, B., Pignolet, P., Peyrous, R., Coste, C., J. Phys. D: Appl. Phys. 25, 677 (1992)CrossRef
Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Kerr, J.A., Troe, J., J. Phys. Chem. Ref. Data 18, 881 (1989)CrossRef
Campbell, I.M., Gray, C.N., Chem. Phys. Lett. 18, 607 (1973)CrossRef
Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Kerr, J.A., Rossi, M.J., Troe, J., J. Phys. Chem. Ref. Data 26, 521 (1997)CrossRef
Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J., Atmos. Chem. Phys. 4, 1461 (2004)CrossRef
Hagelaar, G.J.M., Pitchford, L.C., Plasma Sources Sci. Technol. 14, 722 (2005)CrossRef
Vitello, P.A., Penetrante, B.M., Bardsley, J.N., in Non-Thermal Plasma Techniques for Pollution Control – Part A: Overview, Fundamentals and Supporting Technologies, edited by Penetrante, B.M., Schultheis, S.E. (Springer-Verlag, Berlin, 1993), p. 249271 Google Scholar
Penetrante, B.M., Hsiao, M.C., Merritt, B.T., Vogtlin, G.E., Wallman, P.H., IEEE Trans. Plasma Sci. 23, 679 (1995)CrossRef