Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-24T10:06:21.699Z Has data issue: false hasContentIssue false

Effect of the initial pressure on the characteristics of the flame propagation in hydrogen-propane-air mixtures

Published online by Cambridge University Press:  08 August 2014

Guanbing Cheng
Affiliation:
Aeronautical Engineering College, Civil Aviation University of China, No. 2898, Jinbei Road, Dongli District, 300300 Tianjin, P.R. China
Pascal Bauer*
Affiliation:
Institut P’ UPR 3346, Département Fluides, Thermique, Combustion, CNRS, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Cedex, France
Ratiba Zitoun
Affiliation:
Institut P’ UPR 3346, Département Fluides, Thermique, Combustion, CNRS, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Cedex, France
*
Get access

Abstract

This paper is aimed at an experimental investigation on effects of initial pressure on flame propagation characteristics of binary fuels hydrogen-propane-air mixtures at room temperature. The experiments are performed in a square channel equipped with perforated orifice obstacles. Four initial pressures are examined. Based on pressure transducers along the channel, the flame velocity, maximum pressure of the front peak and characteristic distances are measured. Successive stages are observed as flame propagates: (i) a velocity increase at the beginning, (ii) a velocity equal to the sound speed of combustion products and (iii) a decrease of the velocity. When the initial pressure is more important, the flame velocity and the maximal pressure of the front peak are higher, which yields a shorter characteristic distance of flame propagation. By means of a Schlieren photography technique, the physical mechanisms of flame propagation are identified in its initial stage. The physical mechanisms such as flame surface area increase and combustion product expansion as well as delayed combustion between two adjacent plates are responsible for flame acceleration upon its initial stage. The oscillations of the centerline flame velocity are due to the constrained-expanded structure of flow in reactants ahead of flame when it crosses the plates.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Desbordes, D., Combustion and Detonation Laboratory report, LCD-86, 1993 (unpublished)
Ciccarelli, G., Dorofeev, S., Progr. Energy Combust. Sci. 34, 499 (2008)CrossRef
Law, C.K., Kwon, O.C., Int. J. Hydrogen Energy 29, 867 (2004)CrossRef
Takita, K., Niioka, T., Shock Waves 6, 16 (1996)CrossRef
Yoshida, A., Okuda, Y., Yatsufusa, T., Endo, T., Taki, S., Aoki, S., Umeda, Y., Detonation properties of mixed-fuel-and-air gas mixtures, in Proceedings of 20th Int. Coll. on Dynamics of Explosives and Reactive Systems, Montreal, Canada, 2005, p. 77Google Scholar
Matignon, C., Ph.D. thesis, University of Poitiers, Poitiers, France, 2000
Chaumeix, N., Pichon, S., Lafosse, F., Paillard, C.E., Int. J. Hydrogen Energy 32, 2216 (2007)CrossRef
Bozier, O., Sorin, R., Zitoun, R., Desbordes, D., Detonation characteristics of H2-natural gas-air mixtures, in Proceedings of Euro. Combust. Meeting, Vienna, Austria, 2009, p. 167Google Scholar
Sorin, R., Bozier, O., Zitoun, R., Desbordes, D., Deflagration to detonation transition in binary fuels H2/CH4 with air mixtures, in Proceedings of 22nd Int. Coll. on Dynamics of Explosives and Reactive Systems, Minsk, Belorussia, 2009, p. 186Google Scholar
Sorin, R., Zitoun, R., Desbordes, D., Shock Waves 15, 137 (2006)CrossRef
Cheng, G., Bauer, P., Zitoun, R., Eur. Phys. J. Appl. Phys. 65, 30902 (2014)CrossRef
Cheng, G., Zitoun, R., Bauer, P., Sarrazin, Y., Aerotecnica, , J. Aerospace Sci. Tech. Syst. 91, 120 (2012)
Bollinger, L., Fong, M., Edse, R., ARS Journal 31, 5 (1961)
Ciccarelli, G., Dubocage, P., Flame acceleration in fuel-air mixtures at elevated initial temperatures, in Proceedings of AIAA Joint Propulsion Conference, 2002Google Scholar
Lee, J.H.S., Knystautas, R., Freiman, A., Combust. Flame 56 (1984)CrossRef
Lindstedt, R.P., Michels, H.J., Combust. Flame 72 (1988)CrossRef
Lindstedt, R.P., Michels, H.J., Combust. Flame 76 (1989)CrossRef
Ouarti, N., DEA thesis, University of Poitiers, Poitiers, France, 2001
Kuznetsov, M.S., Ciccarelli, G., Dorofeev, S.B., Alekseev, V., Yu, Y., Kim, T.H., Shock Waves 12 (2002)CrossRef
Li, J., Lai, W.H., Chung, K., Shock waves 16 (2006)CrossRef
Ciccarelli, G., Fowler, C.J., Bardon, M., Shock waves 14 (2005)CrossRef
Teodorczyk, A., Drobniak, P., Dabkowski, A., Int. J. Hydrogen Energy 34 (2008)
Veser, A., Breitung, W., Dorofeev, S.B., J. Phys. IV France 12 (2002)CrossRef
Dorofeev, S.B., Int. J. Hydrogen Energy 34, 5832 (2009)CrossRef
Huang, Z., Wang, J., Liu, B., Zeng, K., Yu, J., Jiang, D., Fuel 86, 3 (2007)
Wang, J. et al., Int. J. Hydrogen Energy 32, 15 (2007)
Saravanan, N., Nagarajan, G., Int. J. Hydrogen Energy 33, 6 (2008)
Tang, C., Huang, Z., Jin, C., He, J., Wang, J., Wang, X., Miao, H., Int. J. Hydrogen Energy 33, 18 (2008)
Heuzé, O., Bauer, P., Presles, H.N., Quatuor: A Code for Computing Thermodynamic Properties of Detonation and Combustion Products (SERiEP Editions, Paris, 1987), p. 96Google Scholar