Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T02:50:50.788Z Has data issue: false hasContentIssue false

Effect of spherical geometry on the heat and mass transfer in a solar still

Published online by Cambridge University Press:  10 June 2014

Salima Karroute*
Affiliation:
LPE, University of Constantine 1, Ain El Bey, 25000 Constantine, Algeria
Abla Chaker
Affiliation:
LPE, University of Constantine 1, Ain El Bey, 25000 Constantine, Algeria
*
Get access

Abstract

In solar still, transparent cover plays a decisive role in the process of evaporation and condensation of water. Also receiving the solar radiation strongly depends on the geometry and orientation of the glass. In order to determine the impact of changing glass cover geometry on conventional solar still heat balance, we elaborate a theoretical model for a spherical solar still. The obtained equations are solved by using 4th order Runge–Kutta method. The numerical results allowed us to evaluate the water temperatures and the yield of still. Theoretical results are validated by the experimental tests in different climatic conditions. We observed that the spherical geometry of the transparent cover has the advantage of a large surface of condensation and does not have a preferred direction to capture maximum of solar energy.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Malik, M.A.S., Tiwari, G.N., Kumar, A., Sodha, M.S., Solar distillation (Pergamon Press, UK, 1982)Google Scholar
Tiwari, G.N., Shukla, S.K., Singh, I.P., Desalination 154, 171 (2003)CrossRef
Singh, H.N., Tiwari, G.N., Desalination 168, 145 (2004)CrossRef
Torchia-Núñez, J.C., Porta-Gàndara, M.A., Renew. Energy 33, 608 (2008)CrossRef
Dimri, V., Sarkar, B., Singh, U., Tiwari, G.N., Desalination 227, 178 (2008)CrossRef
Kaabi, A., Smakdji, N., Desalination 209, 298 (2007)
Dev, R., Tiwari, G.N., Desalination 245, 246 (2009)CrossRef
Tiwari Anil, K.R., Tiwari, G.N., Desalination 180, 73 (2005)CrossRef
Rubio, E., Fernàndez, J., Porta-Gàndara, M., Renew. Energy 29, 895 (2004)CrossRef
Dev, R., Singh, H.N., Tiwari, G.N., Desalination 267, 261 (2011)CrossRef
Dwivedi, V.K., Tiwari, G.N., Desalination 250, 49 (2010)CrossRef
Dhiman, N.K., Desalination 69, 47 (1988)CrossRef
Chaker, A., Menguy, G., Rev. Energ. Ren. Journ′ees de Thermique Special issue 53 (2001)
Haddad, Z., Chaker, A., Boukerzaza, N., 14`emes Journ′ees Internationales de Thermique JITH2009 27–29 Mars, 2009, Djerba, Tunisie.Google Scholar
Ismail, B.I., Renew. Energy 34, 145 (2009)CrossRef
Arunkumar, T., Jayaprakash, R., Denkenberger, D., Ahsan, A., Okundamiya, M.S., Kumar, S., Tanaka, H., Aybar, H.S., Desalination 286, 342 (2012)CrossRef
Meteorological Station of Constantine, 2012
Daguenet, M., Les séchoirs solaires, théorie et pratique (Unisco, Paris, 1985), pp. 202205Google Scholar
Phadatare, M.K., Verma, S.K., Desalination 217, 267 (2007)CrossRef
Tanaka, H., Solar Energy 84, 1959 (2010)CrossRef
Xiao, G., Wang, X., Ni, M., Wang, F., Zhu, W., Luo, Z., Cen, K., Appl. Energy 103, 642 (2013)CrossRef
Sampathkumar, J.K., Arjunan, T.V., Pitchandi, P., Senthilkumar, P., Renew. Sust. Energ. Rev. 14, 1503 (2010)CrossRef
Tiwari, A.K., Tiwari, G.N., Desalination 195, 78 (2006)CrossRef
Ahsan, A., Imteaz, M., Dev, R., Arafat, H.A., Desalination 311, 173 (2013)CrossRef
Tiwari, A.K.R., Tiwari, G.N., Desalination 207, 184 (2007)CrossRef
Hofman, J.D., Numerical Methods for Engineers Scientist, 2nd edn. (Baselmarcel Dekker, Inc., New York, 2001), p. 372Google Scholar
Tiwari, A.K.R., Al-Tahaineh, H.A., Desalination 183, 137 (2005)