Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T08:30:49.287Z Has data issue: false hasContentIssue false

Effect of shear stress and of transmural pressure on cAMP-dependent responses of cells adhering to a biomaterial

Published online by Cambridge University Press:  15 February 2002

R. Chotard-Ghodsnia*
Affiliation:
Biomécanique et Génie Biomédical (UMR CNRS 6600) , Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
A. Drochon
Affiliation:
Biomécanique et Génie Biomédical (UMR CNRS 6600) , Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
N. Faucheux
Affiliation:
Biomécanique et Génie Biomédical (UMR CNRS 6600) , Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
M.-D. Nagel
Affiliation:
Biomécanique et Génie Biomédical (UMR CNRS 6600) , Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
R. Grebe
Affiliation:
Biomécanique et Génie Biomédical (UMR CNRS 6600) , Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
Get access

Abstract

Biomaterials used in some bioreactors are porous and exposed to normal and tangential flow of physiological fluid. Flow-induced forces may influence the morphological and biochemical responses of cells adhering to these materials. The objective of this work is to examine the capacity of mechanical stress to cause changes in cell morphology via the cAMP pathway (cyclic adenosine monophosphate). This second messenger is known to modulate cell morphology in static conditions. In classical flow devices, cells are submitted to only tangential stresses. We designed a new flow system, a Hele-Shaw cell with a porous bottom wall, in order to take into account the influence of a transmural pressure. This flow chamber allows to follow up continuously the shape changes of cells that are adherent to a porous biomaterial (polyacrylonitrile) and are exposed to controlled levels of shear stress or transmural pressure. Mouse Swiss 3T3 fibroblasts exposed to a 1.1-Pa shear stress, as well as those exposed to a 84-mm Hg transmural pressure, round up (up to 50%) in a few minutes. If the cAMP pathway is inhibited when a mechanical stress is applied, cell rounding is significantly prevented. These observations suggest that flow-induced cell shape changes are cAMP-dependent. This conclusion is supported by an increased cAMP accumulation measured in cells under mechanical stress when compared to static experiments. Our in vitro flow system is thus useful to study the influence of transmural pressure or shear stress on the early morphological and biochemical responses of cells in contact with a biomaterial.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ratner, B.D., J. Biomed. Mater. Res. 27, 837 (1993). CrossRef
Faucheux, N., Warocquier-Clérout, R., Duval, J.-L., Haye, B., Nagel, M.-D., Biomaterials 20, 159 (1999). CrossRef
Levesque, M.J., Nerem, R.M., ASME J. Biomech. Eng. 107, 341 (1985). CrossRef
Viggers, R.F., Wechezak, A.R., Sauvage, L.R., ASME J. Biomech. Eng. 108, 332 (1986). CrossRef
Dewey Jr, C.F.., S.R. Bussolari, M.A. Gimbrone Jr., P.F. Davies, ASME J. Biomech. Eng. 103, 177 (1981). CrossRef
Van Kooten, T.G., Schakenraad, J.M., Van Der Mei, H.C., Busscher, H.J., Biomaterials 13, 897 (1992). CrossRef
Van Kooten, T.G., Schakenraad, J.M., Van Der Mei, H.C., Busscher, H.J., J. Biomed. Mater. Res. 26, 725 (1992). CrossRef
Truskey, G.A., Pirone, J.S., J. Biomed. Mater. Res. 24, 1333 (1990). CrossRef
Truskey, G.A., Proulx, T.L., Biomaterials 14, 243 (1993). CrossRef
Bourns, B., Franklin, S., Cassimeris, L., Salmon, E.D., Cell Motil. Cytoskeleton 10, 380 (1988). CrossRef
Haskin, C., Cameron, I., Biochem. Cell Biol. 71, 27 (1993). CrossRef
Thoumine, O., Nerem, R.M., Girard, P.R., In Vitro Cell. Dev. Biol. 31A, 45 (1995). CrossRef
Acevedo, A.R., Bowser, S.S., Gerritsen, M.E., Bizios, R., J. Cell. Physiol. 157, 603 (1993). CrossRef
Tarbell, J.M., Demaio, L., Zaw, M.M., J. Appl. Physiol. 87, 261 (1999).
Frangos, J.A., McIntire, L.V., Eskin, S.G., Biotechnol. Bioeng. 32, 1053 (1988). CrossRef
Reich, K.M., Gay, C.V., Frangos, J.A., J. Cell. Physiol. 143, 100 (1990). CrossRef
Manolopoulos, V.G., Lelkes, P.I., Biochem. Biophys. Res. Commun. 191, 1379 (1993). CrossRef
Malek, A.M., Greene, A.L., Izumo, S., Proc. Natl. Acad. Sci. USA 90, 5999 (1993). CrossRef
R. Chotard-Ghodsnia, A. Drochon, R. Grebe, ASME J. Biomech. Eng. (accepted for publication).
Mulvihill, J., Cazenave, J.-P., Mazzucotelli, J.-P., Crost, T., Collier, C., Renaux, J.-L., Pusineri, C., Biomaterials 13, 527 (1992). CrossRef
Lundberg, L., Stegmayr, B.G., Wehle, B., Int. J. Artif. Organs 17, 131 (1994).
Jaffrin, M.Y., Reach, G., Notelet, D., ASME J. Biomech. Eng. 110, 1 (1988). CrossRef
Höniger, J., Darquy, S., Reach, G., Muscat, E., Thomas, M., Collier, C., Int. J. Artif. Organs 17, 46 (1994).
Kessler, L., Legeay, G., West, R., Belcourt, A., Pinget, M., J. Biomed. Mater. Res. 34, 235 (1997). 3.0.CO;2-H>CrossRef
Faucheux, N., Haye, B., Nagel, M.-D., Biomaterials 21, 1031 (2000). CrossRefPubMed
Biagini, G., Stefoni, S., Solmi, R., Castaldini, C., Buttazzi, R., Rossetti, A., Mattioli Belmonte, M., Nanni Costa, A., Iannelli, S., Borgnino, L.C., De Sanctis, L., Int. J. Artif. Organs 17, 620 (1994).
Groth, T., Falck, P., Miethke, P.R., ATLA 23, 790 (1995).
H.W. Sill, Y.S. Chang, J.R. Artman, J.A. Frangos, T.H. Hollis, J.M. Tarbell, Am. J. Physiol. 268 (Heart Circ. Physiol. 37), H535 (1995).
Smaje, L.H., Swayne, G.T.G., Biorheology 21, 171 (1984).
Lew, H.S., Fung, Y.C., J. Appl. Math. Phys. 20, 750 (1969). CrossRef
Martiny, L., Dib, K., Haye, B., Corrèze, C., Jacquemin, C., Lambert, B., FEBS Lett. 286, 105 (1991). CrossRef
Cailla, H., Racine Weisbuch, M., Delaage, M., Anal. Biochem. 56, 394 (1973). CrossRef
Nerem, R.M., ASME J. Biomech. Eng. 114, 274 (1992). CrossRef
Hall, A.C., Urban, J.P.G., Gehl, K.A., J. Orthop. Res. 9, 1 (1991). CrossRef
Hsiung, C.C., Skalak, R., Biorheology 21, 207 (1984).
Glass, W.F., Kreisberg, J.I., J. Cell. Physiol. 157, 296 (1993).
McNamee, C.J., Pennington, S.R., Sheterline, P., Cell. Biol. Int. 19, 769 (1995). CrossRef
R. Chotard-Ghodsnia, Ph.D. thesis, University of Technology of Compiègne, 2000.
Cohen, C.R., Mills, I., Kamal, K., Sumpio, E., Exp. Cell Res. 231, 184 (1997). CrossRef
Watson, P.A., FASEB J. 5, 2013 (1991).
Faucheux, N., Corrèze, C., Haye, B., Nagel, M.-D., Biomaterials 22, 2993 (2001). CrossRef
Ramirez, O.T., Mutharasan, R., Biotechnol. Bioeng. 36, 911 (1990). CrossRef
Thoumine, O., Ott, A., Biorheology 34, 309 (1997). CrossRef
Sato, M., Theret, D.P., Wheeler, L.T., Oshima, N., Nerem, R.M., ASME J. Biomech. Eng. 112, 263 (1990).
Sato, M., Ohshima, N., Nerem, R.M., J. Biomech. 29, 461 (1996). CrossRef
V.N. Smirnov, A.S. Antonov, G.N. Antonova, Y.A. Romanov, N.V. Kabaeva, I.V. Tchertikhina, M.E. Lukashev, J. Mol. Cell. Cardiol. 21, Suppl. 1, 3 (1989).
R. Chotard-Ghodsnia, A. Drochon, N. Faucheux, M.-D. Nagel, R. Grebe, Biorheology (accepted for publication).