Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T08:39:16.906Z Has data issue: false hasContentIssue false

Effect of N doping on hole density of Cu2O:N films prepared by the reactive magnetron sputtering method

Published online by Cambridge University Press:  25 May 2012

B.B. Li*
Affiliation:
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China Department of Physics, Nanjing University, Nanjing 210093, P.R. China
L. Lin
Affiliation:
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
H.L. Shen
Affiliation:
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
F.E. Boafo
Affiliation:
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Z.F. Chen
Affiliation:
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
B. Liu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
R. Zhang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
*
Get access

Abstract

N-doped Cu2O thin films have been deposited on glass substrate by reactive magnetron sputtering method under various N2/O2 flow ratios from 0 to 1.0. The structural and electronic properties of Cu2O:N films were investigated by X-ray diffraction (XRD), four-point probe and Hall effect measurements. XRD pattern showed that crystalline structures of all the samples retained single phase of Cu2O with the increase of N2/O2 flow ratio from 0 to 1.0. However, the crystalline quality of Cu2O:N films reduced with the increase of the N2/O2 flow ratio. The phenomenon of peak shift of Cu2O(1 1 1) implied that N atoms have been doped into Cu2O film. The square resistance of Cu2O:N films linearly decreased from 28.1 to 1.5 (104 Ω/☐) with the increase of N2/O2 flow ratio from 0.2 to 0.6 initially, and then it changed slowly with the increase of N2/O2 flow ratio from 0.8 to 1.0. Hole density of Cu2O:N films with various N2/O2 flow ratios from 0 to 0.6 was measured using the Van der Pauw method. All the samples are p-type, and the hole density of Cu2O:N films was enhanced from 1.2 × 1016 cm−3 to 3.1 × 1019 cm−3 with the increase of N2/O2 flow ratio from 0 to 0.6. The experimental results demonstrated that N doping was an effective method to enhance hole density of p-type Cu2O film.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rai, B.P., Sol. Cells 25, 265 (1988)CrossRef
Akimoto, K., Ishizuka, S., Yanagita, M., Nawa, Y., Paul, G.K., Sakurai, T., Sol. Energy 80, 715 (2006)CrossRef
Ogwu, A.A., Darma, T.H., Bouquerel, E., J. Achieve. Mater. Manuf. Eng. 24, 172 (2007)
Mittiga, A., Salza, E., Sarto, F., Tucci, M., Vasanthi, R., Appl. Phys. Lett. 88, 163502 (2006)CrossRef
Chen, A., Long, H., Li, X.C., Li, Y.H., Yang, G., Lu, P.X., Vacuum 83, 927 (2009)CrossRef
Ogwu, A.A., Bouquerel, E., Ademosu, O., Moh, S., Crossan, E., Placido, F., J. Phys. D. Appl. Phys. 38, 266 (2005)CrossRef
Nolan, M., Thin Solid Films 516, 8130 (2008)CrossRef
Raebiger, H., Lany, S., Zunger, A., Phys Rev. B 76, 045209 (2007)CrossRef
Tsur, Y., Riess, I., Phys. Rev. B 60, 8138 (1999)CrossRef
Mottiga, A., Biccari, F., Malerba, C., Thin Solid Films 517, 2469 (2009)CrossRef
Papadimitriou, L., Economou, N.A., Trivich, D., Solid State Electron. 26, 767 (1983)CrossRef
Minami, T., Miyata, T., Ihara, K., Minamino, Y., Tsukada, S., Thin Solid Films 494, 47 (2006)CrossRef
Jeong, S.S., Mittiga, A., Salza, E., Masci, A., Passerini, S., Electrochim. Acta 53, 2226 (2008)CrossRef
Ishizuka, S., Suzuki, K., Okamoto, Y., Yanagita, M., Sakurai, T., Akimoto, K., Fujiwara, N., Kobayashi, H., Matsubara, K., Niki, S., Phys. Status Solidi 1, 1067 (2004)CrossRef
Zhang, D.K., Liu, Y.C., Liu, Y.L., Yang, H., Physica B 351, 178 (2004)CrossRef
Ishizuka, S., Kato, S., Okamoto, Y., Akimoto, K., Appl. Phys. Lett. 80, 950 (2002)CrossRef
Ishizuka, S., Kato, S., Maruyama, T., Akimoto, K., Jpn J. Appl. Phys. 40, 2765 (2001)CrossRef
Ishizuka, S., Kato, S., Okamoto, Y., Akimoto, K., J. Cryst. Growth 237–239, 616 (2002)CrossRef
Okamoto, Y., Ishizuka, S., Kato, S., Sakurai, T., Fujiwara, N., Kobayashi, H., Akimoto, K., Appl. Phys. Lett. 82, 1060 (2003)CrossRef
Yoshitaka, N., Shu, S., Takeshi, M., Appl. Phys. Lett. 94, 022111 (2009)
Yang, W.-Y., Kim, W.-G., Rhee, S.-W., Thin Solid Films 517, 967 (2008)CrossRef
Drobny, V.F., Pulfrey, L., Thin Solid Films 61, 89 (1979)CrossRef
Li, H.J., Pu, C.Y., Ma, C.Y., Li, S., Dong, W.J., Bao, S.Y., Zhang, Q.Y., Thin Solid Films 520, 212 (2011)CrossRef
Jeong, S.H., Aydil, E.S., J. Vac. Sci. Technol. A 28, 1338 (2010)CrossRef
Ishizuka, S., Marugama, T., Akimoto, K., Jpn J. Appl. Phys. 39, L786 (2000)CrossRef
Li, B.S., Akimoto, K., Shen, A., J. Cryst. Growth 311, 1102 (2009)CrossRef