Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T06:56:25.301Z Has data issue: false hasContentIssue false

Double-channeled omnidirectional filtering properties of the sandwich structures composed of single-negative materials

Published online by Cambridge University Press:  22 April 2009

L. W. Zhang*
Affiliation:
School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, P.R. China Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P.R. China
G. Q. Du
Affiliation:
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P.R. China School of Space Science and Physics, Shandong University at Weihai, Weihai 264209, P.R. China
J. P. Xu
Affiliation:
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P.R. China
Z. G. Wang
Affiliation:
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P.R. China
Y. W. Zhang
Affiliation:
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P.R. China
Get access

Abstract

Double-channeled omnidirectional filtering properties are found in the sandwich structure composed of a ε-negative layer and a μ-negative layer separated by another single-negative layer with either dielectric permittivity or magnetic permeability described by Lorentz model. The twin tunneling interface modes are generated by the excitation of surface polaritons. It is shown that the two tunneling modes are insensitive to the incidence angles and the polarizations. Furthermore, the tunneling frequency and the frequency interval of the two modes can be tuned by changing the resonance frequency and the thickness of the center layer respectively. The characteristics can be utilized to design double-channeled tunable omnidirectional filters using in microwave and optical engineering.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, H.Y., Makino, H., Yao, T., Tanaka, A., Appl. Phys. Lett. 81, 4502 (2002) CrossRef
Zhang, H.Y., Zhang, Y.P., Wang, P., Yao, J.Q., J. Appl. Phys. 101, 013111 (2007)
Wang, Z.S., Wang, L., Wu, Y.G., Chen, L.Y., Chen, X.S., Lu, W., Appl. Phys. Lett. 84, 1629 (2004) CrossRef
Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987) CrossRef
Li, J., Zhou, L., Chan, C.T., Sheng, P., Phys. Rev. Lett. 90, 083901 (2003) CrossRef
Jiang, H.T., Chen, H., Li, H.Q., Zhang, Y.W., Zi, J., S.Y. Zhu Phys. Rev. E 69, 066607 (2004) CrossRef
Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968)
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., J. Phys. Condens. Matter 10, 4785 (1998) CrossRef
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)
Zhang, L.W., Zhang, Y.W., He, L., Li, H.Q., Chen, H., Phys. Rev. E 74, 056615 (2006) CrossRef
Grbic, A. et al., J. Appl. Phys. 92, 5930 (2002); C. Caloz et al., Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley & Sons, New York, 2006) CrossRef
Jiang, H.T., Chen, H., Zhu, S.Y., Opt. Lett. 32, 1980 (2007)
Guan, G.G., Jiang, H.T., Li, H.Q., Zhang, Y.W., Chen, H., Appl. Phys. Lett. 88, 211112 (2006) CrossRef
Al, A., Engheta, N., IEEE Trans. Antennas Propagat. 51, 2558 (2003) CrossRef
Jiang, H.T., Chen, H., Zhu, S.Y., Phys. Rev. E 73, 046601 (2006) CrossRef
Liu, R.P., Zhang, B., Li, X.Q., Gui, T.J., Appl. Phys. Lett. 89, 221919 (2006)
Zhou, L., Wen, W.J., Chan, C.T., Sheng, P., Phys. Rev. lett. 94, 243905 (2006) CrossRef
Shin, H., Fan, S.H., Phys. Rev. lett. 96, 073907 (2006) CrossRef
Ruppin, R., J. Phys. Condens. Matter 13, 1811 (2001)
Jiang, H.T., Chen, H., Li, H.Q., Zhang, Y.W., Zhu, S.Y., Appl. Phys. Lett. 83, 5386 (2003) CrossRef
Wang, L.G., Chen, H., Zhu, S.Y., Phys. Rev. B 70, 245102 (2004) CrossRef
Lakhtakia, A., Sherwin, J.A., Int. J. Infrared Millim. Waves 24, 19 (2003) CrossRef
Wu, D., Fang, N., Sun, C. et al., Appl. Phys. Lett. 83, 201 (2003)