Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T19:45:16.797Z Has data issue: false hasContentIssue false

Dissociation of N2 in flowing glow discharge: Influence of H2*

Published online by Cambridge University Press:  15 February 1999

A. R. de Souza
Affiliation:
Laboratório de Materiais, EMC, UFSC 88040-900-Florianópolis, SC, Brazil
M. Digiacomo
Affiliation:
Laboratório de Materiais, EMC, UFSC 88040-900-Florianópolis, SC, Brazil
J. L. R. Muzart
Affiliation:
Laboratório de Materiais, EMC, UFSC 88040-900-Florianópolis, SC, Brazil
J. Nahorny
Affiliation:
Laboratório de Materiais, EMC, UFSC 88040-900-Florianópolis, SC, Brazil CPAT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
A. Ricard
Affiliation:
Laboratório de Materiais, EMC, UFSC 88040-900-Florianópolis, SC, Brazil Laboratório de Materiais, EMC, UFSC 88040-900-Florianópolis, SC, Brazil CPAT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
Get access

Abstract

The N2 dissociation yield has been measured in a flowing post-discharge containing H2 between 0 to 5%. The N atom density has been determined in the fast post-discharge (Δt = 5 × 10−2 s) electric field has been measured by electrostatic probes as a function of H2 relative concentration. It is demonstrated that the H2 produces a significant increase in the N-atom concentration measured in the post-discharge. For our experimental conditions it was determined an increase up to 3 times in comparison to pure nitrogen discharge. The maximum yield of N-atoms was obtained for a H2 relative concentration of about 2%. This result cannot only be explained by the decrease of N atoms surface losses. It is demonstrated that the N2 dissociation increase is also the result of an increase of the discharge reduced electric field.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cacciatore, M., Capitelli, M., Gorse, C., Chem. Phys. 66, 141 (1982). CrossRef
Loureiro, J., Ferreira, C.M., Capitelli, M., Gorse, C., Cacciatori, M., J. Phys. D: Appl. Phys. 23, 1371 (1990). CrossRef
Ricard, A., Rev. Phys. Appl. 24, 251 (1989). CrossRef
Ricard, A., Malvos, H., H. Michel. J. Phys. D: Appl. Phys. 27, 1328 (1994).
Kaufman, F., Kelso, J.R., J. Chem. Phys. 32, 301 (1960). CrossRef
Brown, R.L., J. Phys. Chem. 71, 2492 (1967). CrossRef
Sobrinho, A.S.S., de Souza, A.R., Drago, V., Muzart, J.L.R, Rev. Bras. Inst. Fis. Apl. 3, 84 (1993).
de Souza, A.R., Mahlmann, C.M., Muzart, J.L.R., Speller, C.V., J. Phys D: Appl. Phys. 26, 2164 (1993). CrossRef
Gordiets, B., Ferreira, C.M., Guerra, V., Loureiro, J., Nahorny, J., Pagnon, D., M. touzeau M. Vialle, IEEE Trans. Plasma. Sci. 23, 750 (1995).
Loureiro, J., Ricard, A., J. Phys. D: Appl. Phys. 26, 163 (1993). CrossRef
M. Moisan, J. Pelletier, Microwave Excited Plasma (Elsevier Science, Amesterdam, 1992), Vol. 4.
Piper, L.G. , Caledonia, G.E., Kennealy, J.P., J. Chem. Phys. 75, 2847 (1981). CrossRef
Piper, L.G., J. Chem. Phys. 91, 864 (1989). CrossRef
Ricard, A., A.R. de Souza. J. Phys. III France 4, 2593 (1994).
Bockel, S., Diamy, A.M., A. Ricard. Surf. Coat. Tech. 74, 474 (1995). CrossRef
Amorim, J., Baravian, G., Ricard, A., Plasma Chem. Plasma Process 15, 721 (1995). CrossRef
S. Bockel, G. Baravian, A. Ricard, Le Vide (CIP, Antibes France, 1995).
Nahorny, J., Ferreira, C.M., Gordiets, B, Pagnon, D., Touzeau, M., Vialle, M., J. Phys. D.: Appl. Phys. 28, 738 (1995).
Gordiets, B., Ferreira, C. M., Pinheiro, M.J., Ricard, A., Plasma Sources Sci. Tech. 7, 363 (1998). CrossRef