Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T14:44:49.569Z Has data issue: false hasContentIssue false

Direct enhancement of any solution NMR signal using the distant dipolar fields createdby highly polarized and concentrated nuclear spin systems

Published online by Cambridge University Press:  06 October 2006

H. Desvaux*
Affiliation:
Laboratoire Structure et Dynamique par Résonance Magnétique, Service de Chimie Moléculaire, URA CEA/CNRS 331 Claude Fréjacques, CEA/Saclay, 91191 Gif-sur-Yvette, France
D. J. Marion
Affiliation:
Laboratoire Structure et Dynamique par Résonance Magnétique, Service de Chimie Moléculaire, URA CEA/CNRS 331 Claude Fréjacques, CEA/Saclay, 91191 Gif-sur-Yvette, France
G. Huber
Affiliation:
Laboratoire Structure et Dynamique par Résonance Magnétique, Service de Chimie Moléculaire, URA CEA/CNRS 331 Claude Fréjacques, CEA/Saclay, 91191 Gif-sur-Yvette, France
L. Dubois
Affiliation:
Laboratoire Structure et Dynamique par Résonance Magnétique, Service de Chimie Moléculaire, URA CEA/CNRS 331 Claude Fréjacques, CEA/Saclay, 91191 Gif-sur-Yvette, France
P. Berthault
Affiliation:
Laboratoire Structure et Dynamique par Résonance Magnétique, Service de Chimie Moléculaire, URA CEA/CNRS 331 Claude Fréjacques, CEA/Saclay, 91191 Gif-sur-Yvette, France
Get access

Abstract

Peculiar nuclear spin systems can be polarized at a level of thousands times the value obtained at thermal equilibrium, for instance by optical pumping. When concentrated, these systems create a sizeable average dipolar field which is experienced by any nuclear spin. We propose to use these distant dipolar fields for performing a polarization transfer in the Hartmann-Hahn conditions. We report the maximum enhancement value calculated using the spin temperature approach and first theoretical insights on the polarization transfer rate. Using, as an example, dissolved laser-polarized xenon, we show that by spin-locking both xenon spins and a proton spin of a solute, the polarization of the latter is enhanced. This is obtained without the existence of chemical interaction between the two entities and with characteristic rising time not directly correlated to the proton self-relaxation time. By its generality and its non-local feature, this approach could make possible nuclear magnetic resonance spectroscopy on very dilute systems.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetism resonance in one and two dimensions (Clarendon Press, Oxford, 1987)
A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)
Braunstein, S., Caves, C., Jozsa, R., Linden, N., Popescu, S., Schack, R., Phys. Rev. Lett. 83, 1054 (1999) CrossRef
McDermott, R., Trabesinger, A.H., Mück, M., Hahn, E.L., Pines, A., Clarke, J., Science 295, 2247 (2002) CrossRef
Rugar, D., Budakian, R., Mamin, H., Chui, B., Nature 430, 329 (2004) CrossRef
Savukov, I.M., Romalis, M.V., Phys. Rev. Lett. 94, 123001 (2005) CrossRef
Kuhns, P.L., Kleinhammes, A., Moulton, W.G., Sullivan, N.S., J. Magn. Reson. A 115, 270 (1995) CrossRef
Walker, T.G., Happer, W., Rev. Mod. Phys. 69, 629 (1997) CrossRef
Hall, D.A., Maus, D.C., Gerfen, G.J., Inati, S.J., Becerra, L.R., Dahlquist, F.W., Griffin, R.G., Science 276, 930 (1997) CrossRef
Wolber, J., Ellner, F., Fridlund, B., Gram, A., Jóhannesson, H., Hansson, G., Hansson, L.H., Lerche, M.H., Møansson, S., Servin, R., Thaning, M., Golman, K., Ardenkjær-Larsen, J.H., Nucl. Instrum. Meth. A 526, 173 (2004) CrossRef
Ardenkjær-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K., Proc. Natl Acad. Sci. (USA) 100, 10158 (2003)
Navon, G., Song, Y.-Q., Rõõm, T., Appelt, S., Taylor, R.E., Pines, A., Science 271, 1848 (1996) CrossRef
Luhmer, M., Goodson, B.M., Song, Y.-Q., Laws, D.D., Kaiser, L., Cyrier, M.C., Pines, A., J. Am. Chem. Soc. 121, 3502 (1999) CrossRef
Desvaux, H., Gautier, T., Le Goff, G., Pétro, M., Berthault, P., Eur. Phys. J. D 12, 289 (2000) CrossRef
Dubois, L., Berthault, P., Huber, J.G., Desvaux, H., C.R. Phys. 5, 305 (2004) CrossRef
Desvaux, H., Dubois, L., Huber, G., Quillin, M.L., Berthault, P., Matthews, B.W., J. Am. Chem. Soc. 127, 11676 (2005) CrossRef
Warren, W.S., Richter, W., Andreotti, A.H., Farmer II, B.T., Science 262, 2005 (1993) CrossRef
Edzes, H.T., J. Magn. Reson. 86, 293 (1990)
Sauer, K.L., Marion, F., Nacher, P.J., Tastevin, G., Phys. Rev. B 63, 184427 (2001) CrossRef
Richter, W., Lee, S., Warren, W.S., He, Q., Science 267, 654 (1995) CrossRef
Goldman, M., Desvaux, H., Chem. Phys. Lett. 256, 497 (1996) CrossRef
Lin, Y.Y., Lisitza, N., Ahn, S.D., Warren, W.S., Science 290, 118 (2000) CrossRef
Jeener, J., Phys. Rev. Lett. 82, 1772 (1999) CrossRef
Huang, S.Y., Walls, J.D., Wang, Y., Warren, W.S., Lin, Y.Y., J. Chem. Phys. 121, 6105 (2004) CrossRef
Walls, J., Phoa, F., Lin, Y., Phys. Rev. B 70, 174410 (2005) CrossRef
Warren, W.S., Ahn, S., J. Chem. Phys. 108, 1313 (1998) CrossRef
Granwehr, J., Urban, J.T., Trabesinger, A.H., Pines, A., J. Magn. Reson. 176, 125 (2005) CrossRef
Jeener, J., Vlassenbroek, A., Broekaert, P., J. Chem. Phys. 103, 1309 (1995) CrossRef
Lee, S., Richter, W., Vathyam, S., Warren, W.S., J. Chem. Phys. 105, 874 (1996) CrossRef
Jeener, J., J. Chem. Phys. 112, 5091 (2000) CrossRef
Hartmann, S.R., Hahn, E.L., Phys. Rev. 128, 2042 (1962) CrossRef
Levitt, M.H., Sutter, D., Ernst, R.R., J. Chem. Phys. 84, 4243 (1986) CrossRef
M. Goldman, Spin temperature and nuclear magnetic resonance in solids (Clarendon Press, Oxford, 1970)
A. Abragam, M. Goldman, Nuclear magnetism: order and disorder (Clarendon Press, Oxford, 1982)
B.H. Meier, Adv. Magn. Opt. Reson. edited by W.S. Warren (Academic Press Inc., San Diego, 1994), p. 1
Ebert, M., Grossmann, T., Heil, W., Otten, E.W., Schafer, M., Surkau, R., Leduc, M., Bachert, P., Knopp, M.V., Schad, L.R., Thelen, M., The Lancet 347, 1297 (1996) CrossRef
Ruth, U., Hof, T., Schmidt, J., Fick, D., Jänsch, H.J., Appl. Phys. B 68, 93 (1999) CrossRef
Zook, A.L., Adhyaru, B.B., Bowers, C.R., J. Magn. Reson. 159, 175 (2002) CrossRef
Anwar, M.S., Blazina, D., Carteret, H.A., Duckett, S.B., Halstead, T.K., Jones, J.A., Kozak, C.M., Taylor, R.J.K., Phys. Rev. Lett. 93, 040501 (2004) CrossRef
Goldman, M., Jóhannesson, H., C.R. Phys. 6, 575 (2005) CrossRef
Demco, D.E., Tegenfeldt, J., Waugh, J.S., Phys. Rev. B 11, 4133 (1975) CrossRef
Abragam, A., Chapellier, M., Jacquinot, J.F., Goldman, M., J. Magn. Reson. 10, 322 (1973)
Desvaux, H., Berthault, P., Prog. NMR Spectrosc. 35, 295 (1999) CrossRef
Waugh, J.S., Gonen, O., Kuhns, P., J. Chem. Phys. 86, 3816 (1987) CrossRef
Villard, B., Nacher, P.-J., Physica B 284–288, 180 (2000) CrossRef
Guenneugues, M., Berthault, P., Desvaux, H., J. Magn. Reson. 136, 118 (1999) CrossRef
Desvaux, H., Kümmerle, R., Kowalewski, J., Luchinat, C., Bertini, I., ChemPhysChem 5, 959 (2004) CrossRef
H.L. Clever, IUPAC solubility data series (Pergamon Press, Oxford, 1979)
Chiarparin, E., Pelupessy, P., Bodenhausen, G., Mol. Phys. 95, 759 (1998) CrossRef
Shaka, A.J., Lee, C.J., Pines, A., J. Magn. Reson. 77, 274 (1988)
Levitt, M.H., J. Chem. Phys. 94, 30 (1991) CrossRef
S.J. Glaser, J.J. Quant, Adv. Magn. Opt. Reson. edited by W.S. Warren (Academic Press Inc., San Diego, 1996), p. 59