Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T11:31:01.088Z Has data issue: false hasContentIssue false

Diffusive behavior of a surface layer in BaTiO3 crystals grown by Remeika method

Published online by Cambridge University Press:  25 November 2014

Evgeniy Dul’kin*
Affiliation:
Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Michael Roth
Affiliation:
Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Get access

Abstract

BaTiO3 crystals, grown by Remeika method, were studied by means of acoustic emission and dielectric response. It is established, that the phase transition in the surface layer occurs on 13 °C below in comparing with the crystals bulk. It is observed, that the imaginary dielectric response of a crystal surface layer exhibits an essential smearing and slight frequency shift to higher temperatures. Reasons of such properties are discussed from a viewpoint of diffusive phase transition, taking place in the surface layer, enriched by K+ ions from KF flux.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smolensky, G.A., Isupov, V.A, Zh. Tekh. Fiz. 24, 1375 (1954)
Smolensky, G.A., Agranovskaya, A.I., Isupov, V.A., Popov, S.N., Sov. Phys. Solid State 2, 2584 (1961)
Bokov, A.A., Ye, Z.-G., J. Mat. Sci. 41, 31 (2006)CrossRef
Shvartsman, V.V., Lupascu, D.C., J. Am. Ceram. Soc. 95, 1 (2012)CrossRef
Dec, J., Kleemann, W., Woike, Th., Pankrath, R., Eur. Phys. J. B 14, 627 (2000)CrossRef
Kleemann, W., J. Adv. Diel. 2, 1241001 (2012)CrossRef
Dul’kin, E., Petzelt, J., Kamba, S., Mojaev, E., Roth, M., Appl. Phys. Lett. 97, 032903 (2010)CrossRef
Pugachev, A.M., Kovalevskii, V.I., Surovtsev, N.V., Kojima, S., Prosandeev, S.A., Raevski, I.P., Raevskaya, S.I., Phys. Rev. Lett. 108, 247601 (2012)CrossRef
Dul’kin, E., Roth, M., J. Phys.: Condens. Matter 25, 155901 (2013)
Ravez, J., Simon, A., Solid State Sci. 2, 525 (2000)CrossRef
Remeika, J.P., J. Am. Chem. Soc. 76, 940 (1954)CrossRef
Godefroy, G., Lompré, P., Dumas, C., Arend, H., Mat. Res. Bull. 12, 165 (1977)CrossRef
von Hippel, A., Technical Report 191 Laboratory for Insulation Research, Massachusetts Institute of Technology, 1964Google Scholar
DeVries, R.C., Sears, G.W., J. Chem. Phys. 34, 616 (1961)CrossRef
Forsbergh, P.W., Phys. Rev. 76, 1187 (1949)CrossRef
Kudzin, A.Yu., Guenok, E.P., Zabara, Yu.V., Sov. Phys. J. 16, 533 (1973)CrossRef
Dul’kin, E., Gavrilyachenko, V.G., Semenchev, A.F., Phys. Solid State 34, 863 (1992)
Dul’kin, E., Gavrilyachenko, V.G., Semenchev, A.F., Phys. Solid State 35, 1016 (1993)
Dul’kin, E., Ferroelectrics Letters 20, 157 (1996)
Tsukada, S., Hiraki, Y., Akishige, Y., Kojima, S., Phys. Rev. B 80, 012102 (2009)CrossRef
Dul’kin, E., Kojima, S., Roth, M., J. Appl. Phys. 110, 044106 (2011)CrossRef
Dul’kin, E., Raevski, I.P., Ferroelectrics 242, 53 (2000)CrossRef
Smolensky, G.A., Isupov, V.A., Sov. Phys. Tech. Phys. 24, 1375 (1954)[in Russian]
Isupov, V.A., Ferroelectrics 90, 113 (1989)CrossRef