Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T18:15:50.268Z Has data issue: false hasContentIssue false

Dielectric properties of periodic heterostructures:A computational electrostatics approach*

Published online by Cambridge University Press:  15 April 1999

C. Brosseau*
Affiliation:
Laboratoire d'Électronique et Systèmes de Télécommunications, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, B.P. 809, 29285 Brest Cedex, France
A. Beroual*
Affiliation:
Centre de Génie Électrique de Lyon, École Centrale de Lyon, B.P. 163, 36 avenue Guy de Collongue, 69131 Écully Cedex, France
Get access

Abstract

The dielectric properties of heterogeneous materials for various condensed-matter systems are important for several technologies, e.g. impregnated polymers for high-density capacitors, polymer carbon black mixtures for automotive tires and current limiters in circuit protection. These multiscale systems lead to challenging problems of connecting microstructural features (shape, spatial arrangement and size distribution of inclusions) to macroscopic materials response (permittivity, conductivity). In this paper, we briefly discuss an ab initio computational electrostatics approach, based either on the use of the field calculation package FLUX3D (or FLUX2D) and a conventional finite elements method, or the use of the field calculation package PHI3D and the resolution of boundary integral equations, for calculating the effective permittivity of two-component dielectric heterostructures. Numerical results concerning inclusions of permittivity ε1 with various geometrical shapes periodically arranged in a host matrix of permittivity ε2 are provided. Next we discuss these results in terms of phenomenological mixing laws, analytical theory and connectedness. During the pursuit of these activities, several interesting phenomena were discovered that will stimulate further investigation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was presented at the PIERS 98 conference (Progress in Electromagnetics Research Symposium) held at Nantes (France), July 13-17, 1998.

References

R. Landauer, in Electric Transport and Optical Properties of Inhomogeneous Media, edited by J.C. Garland, D.B. Tanner (AIP Conference Proceedings, No. 40, American Institute of Physics, New York, 1978), p. 2.
M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London, 1994).
D. Stauffer, A. Aharoni, Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London, 1992).
Bergman, D.J., Stroud, D., Solid State Phys. 46, 147 (1992). CrossRef
Progress in Electromagnetics Research: Dielectric Properties of Heterogenous Materials, edited by A. Priou, (Elsevier, New-York, 1992) and references therein; see also for a recent review on electrical and optical properties, we refer to the Proceedings of the Second International Conference on Electrical and Optical Properties of Inhomogeneous Media (Physica A 157, (1989)).
Brosseau, C., J. Appl. Phys. 75, 672 (1994). CrossRef
Brosseau, C., Boulic, F., Bourbigot, C., Queffelec, P., Le Mest, Y., Loaëc, J., Beroual, A., J. Appl. Phys. 81, 882 (1997). CrossRef
Boulic, F., Brosseau, C., Le Mest, Y., Loaëc, J., Carmona, F., J. Phys. D: Appl. Phys. 31, 1904 (1998). CrossRef
A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1997).
Sareni, B., Krahenbühl, L., Beroual, A., Brosseau, C., J. Appl. Phys. 80, 1688 (1996). CrossRef
Sareni, B., Krahenbühl, L., Beroual, A., Brosseau, C., J. Appl. Phys. 80, 4560 (1996). CrossRef
Sareni, B., Krahenbühl, L., Beroual, A., Brosseau, C., J. Appl. Phys. 81, 2375 (1997). CrossRef
Boudida, A., Beroual, A., Brosseau, C., J. Appl. Phys. 83, 425 (1998). CrossRef
C.A. Brebbia, The Boundary Element Method for Engineers (Pentech Press, London, 1980); see also O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, (McGraw-Hill, London, 1989), Vol. 1.
W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, New York, 1986).
McPhedran, R.C., McKenzie, D.R., Proc. R. Soc. Lond. A 359, 45 (1978). CrossRef
Tao, R., Chen, Z., Sheng, P., Phys. Rev. B 41, 2417 (1989). CrossRef
Sihvola, A., Kong, J.A., IEEE Trans. Geosci. Remote Sensing 26, 420 (1988)
Liu, C., Shen, L.C., J. Appl. Phys. 73, 1897 (1993). CrossRef
Bergman, D.J., Phys. Rep. 43, 377 (1978)
Milton, G.W., J. Appl. Phys. 52, 5286 (1981). CrossRef
A. Boudida, A. Beroual, C. Brosseau, in Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Atlanta, Georgia, USA, 1998, Vol. 1, pp. 261-264.
Carmona, F., Barreau, F., Delhaes, P., Conet, R., J. Phys. Lett. 41, L531 (1980)
McLachlan, D.S., Blaszkiewicz, M., Newnham, R.E., J. Am. Ceram. Soc. 73, 2187 (1990). CrossRef
Roberts, A.P., Knackstedt, M.A., Phys. Rev. E 54, 2313 (1996). CrossRef
Schäfer, H., Sternin, E., Stannarius, R., Arndt, M., Kremer, F., Phys. Rev. Lett. 76, 2177 (1996). CrossRef