Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T08:18:11.033Z Has data issue: false hasContentIssue false

Developing an advanced PWM-switch model including semiconductor devicenon-linearities

Published online by Cambridge University Press:  11 December 2002

A. Ammous*
Affiliation:
Laboratoire d'Électronique et des Technologies de l'Information (LETI), ENIS, BP W, 3038 Sfax, Tunisia
M. Ayedi
Affiliation:
Laboratoire d'Électronique et des Technologies de l'Information (LETI), ENIS, BP W, 3038 Sfax, Tunisia
Y. Ounajjar
Affiliation:
Laboratoire d'Électronique et des Technologies de l'Information (LETI), ENIS, BP W, 3038 Sfax, Tunisia
F. Sellami
Affiliation:
Laboratoire d'Électronique et des Technologies de l'Information (LETI), ENIS, BP W, 3038 Sfax, Tunisia
K. Ammous
Affiliation:
Centre de Génie Électrique de Lyon (CEGELY), INSA-Lyon, Bât. 401, 69621 Villeurbanne, France
H. Morel
Affiliation:
Centre de Génie Électrique de Lyon (CEGELY), INSA-Lyon, Bât. 401, 69621 Villeurbanne, France
Get access

Abstract

The accurate simulation of power electronic systems is possible when including accurate models of the semiconductor devices, but practically not affordable. Classical ideal averaged models of the system are not suitable either. Hence, averaged models including the non-linear effects of the power semiconductor devices appear quite efficient. The proposed non-ideal PWM-switch model is a useful method for modeling pulse width modulated converters operating in the continuous conduction mode. The main advantages of the proposed averaged model are the takes into account of the non-linear effects of power devices and the possibility to estimate the dissipated power in the different circuit devices. The proposed electrical model can be applied to bi-directional converters and allows the coupling with thermal model in the power electronic system. A simple technique to evaluate the different static and dynamic parameters of the devices, from manufacturers data sheets or experimentally, is presented.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, J., Yu, J., Int. J. Electron. 67, 937 (1989) CrossRef
Sanders, S.R., et al., IEEE Trans. Power Electron. 6, 251 (1991) CrossRef
Tang, W., et al., IEEE Trans. Power Electron. 8, 112 (1993) CrossRef
Van Dijk, E., et al., IEEE Trans. Power Electron. 10, 659 (1995) CrossRef
Lehman, B., et al., IEEE Trans. Power Electron. 11, 89 (1996) CrossRef
Oruganti, R., et al., IEEE Trans. Power. Electron. 15, 411 (2000) CrossRef
B. Allard, H. Morel, A. Ammous, S. Guedira, Proc. PESC'98, Fukuoka, Japan, pp. 647-653
B. Allard, H. Morel, A. Ammous, S. Guedira, Building Advanced Averaged Models of Power Converters From Switched Bond Graph Representation, SCS Simulation Series, Vol. 31, No. 1, USA, pp. 331-337
B. Allard, H. Morel, S. Ghedira, A. Ammous, Averaged modeling of power converters using bond graphs, SCS Simulation Series, Vol. 1, p. 270 (1997)
MATLAB Simulator User's Guide
F. Profumo, A. Tenconi, G. Griva, S. Facelli, Proc. of EPE'95, Sevilla, pp. 1.255-1.261
B. Allard, H. Morel, A. Ammous, S. Ghedira, A bond graph Simulator for Power Train Simulation Including Semiconductor device Models, Proc. of IMACS'96, Lille, France, pp. 500-505
Morel, H., Gamal, S., Chante, J.P., IEEE Trans. Power Electron. 9, 112 (1994) CrossRef
A.R. Hefner Jr., Modeling Buffer Layer IGBTs for Circuit Simulation, Proc. IEEE, PESC' 93, Seatle, June 1993, pp. 60-70
Hefner Jr, A.R.., D.M. Diebolt, IEEE Trans. Power Electron. 9, 532 (1994) CrossRef
Hefner Jr, A.R.., D.L. Blackburn, Solid-State Electron. 31, 1513 (1988) CrossRef
Hefner Jr, A.R.., IEEE Trans. Power Electron. 5, 459 (1990) CrossRef
Ammous, A., Ammous, K., Morel, H., Allard, B., Bergogne, D., Sellami, F., Chante, J.P., IEEE Trans. Power Electron. 15, 778 (2000) CrossRef
Chung-Chieh Lin, B. Allard, H. Morel, J.-P. Chante, Technological Parameter Identification of PIN-Diode using Transient Signal Parameter Fits, EPE'93 Brighton, pp. 29-33
S. Guedira, Estimation of the Technological Parameters of the PiN Diode from Switching Characteristics, Ph.D. Thesis, INSA-Lyon-France, 1998 (98-ISAL-0029)
P.R. Strickland, IBM J., 35 (1959)
Hefner, A.R., Blakburn, D.L., Trans, IEEE. Comp., Pack., Man. Tech-Part A 17, 413 (1994)
Jia Tzer Hsu, Loc Vu-Quoc, IEEE Trans. Circuits and Syst. - I: Fundamental Theory and Applications 43, 721 (1996) CrossRef
Ammous, A., Ghedira, S., Allard, B., Morel, H., IEEE Trans. Power Electron. 14, 300 (1999) CrossRef
Ammous, A., Allard, B., Morel, H., IEEE Trans. Power Electron. 13, 12 (1998) CrossRef
A. Ammous, et al., Int. J. Thermal Sci. 42 (2002)
Skibinski, G.L., et al., IEEE Trans. Power Electron. 6, 228 (1991) CrossRef
Sofia, J.W., Trans, IEEE. Comp., Pack., Man. Tech.-Part A 18, 39 (1995)