Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-28T00:02:01.745Z Has data issue: false hasContentIssue false

Design of bottom mirrors for resonant cavity enhanced GaAs homojunction far-infrared detectors

Published online by Cambridge University Press:  26 May 2003

Y. H. Zhang
Affiliation:
Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, PR China
H. T. Luo
Affiliation:
Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, PR China
W. Z. Shen*
Affiliation:
Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, PR China
Get access

Abstract

The design of bottom mirrors for resonant cavity enhanced (RCE) GaAs homojunction far-infrared (FIR) detectors has been investigated in the framework of three possible projects. The results show that neither the bottom contact layer of the detector itself nor the distributed Bragg reflector, which has been widely employed in near- and mid-infrared detectors, can perform well as bottom mirrors for FIR detectors. A new kind of bottom mirrors based on undoped/doped GaAs layers is proposed and optimized. Though the absorption cannot be neglected, the bottom mirror shows a satisfactory effect. The resulting absorption probability (as well as the quantum efficiency) in the detector cavity for this kind of RCE p-GaAs FIR detector is three times of the normal p-GaAs homojunction FIR detector demonstrated experimentally. This kind of bottom mirror design opens a new way to increase the quantum efficiency in homojunction FIR detectors.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Werner, M.W., Infrared Phys. Technol. 35, 539 (1994) CrossRef
Shen, W.Z., Perera, A.G.U., Liu, H.C., Buchanan, M., Schaff, W.J., Appl. Phys. Lett. 71, 2677 (1997) CrossRef
Perera, A.G.U., Shen, W.Z., Liu, H.C., Buchanan, M., Tanner, M.O., Wang, K.L., Appl. Phys. Lett. 72, 2307 (1998) CrossRef
Nie, H., Anselm, K.A., Hu, V., Murtaza, S.S., Streetman, B.G., Campbell, J.C., Appl. Phys. Lett. 70, 161 (1997) CrossRef
Lennox, C., Nie, H., Yuan, P., Kinsley, G., Holmes Jr, A.L.., B.G. Streetman, J.C. Campbell, IEEE Photon. Technol. Lett. 11, 1162 (1999) CrossRef
Ünlü, M.S., Gokkavas, M., Onat, B.M., Ata, E., Ozbay, E., Mirin, T.P., Knopp, K.J., Bartness, K.A., Christensen, D.H., Appl. Phys. Lett. 72, 2727 (1998) CrossRef
Zhang, Y.H., Luo, H.T., Shen, W.Z., J. Appl. Phys. 91, 5538 (2002)
H.A. Macleod, Thin-film Optical Filters, 2nd edn. (New York: MacMillan, 1986), p. 52
Z. Knittl, Optics of Thin Films (London: Wiley, 1976), pp. 35-51
M.V. Klein, T.E. Furtak, Optics, 2nd edn. (New York: Wiley, 1986), pp. 295-300
Blakemore, J.S., J. Appl. Phys. 53, R123 (1982) CrossRef
Korotkov, A.L., Perera, A.G.U., Shen, W.Z., Herfort, J., Ploog, K.H., Schaff, W.J., Liu, H.C., J. Appl. Phys. 89, 3295 (2001) CrossRef
Yu, G., Zhang, Y.H., Shen, W.Z., Appl. Surf. Sci. 199, 160 (2002) CrossRef
Young, E.T., Proc. SPIE 2019, 96 (1993) CrossRef