Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-26T19:22:28.377Z Has data issue: false hasContentIssue false

Design and optimization of an OR gate all optical circuit based on silicon photonic crystals

Published online by Cambridge University Press:  14 November 2011

R. Bchir*
Affiliation:
Laboratory of Photovoltaic, Semiconductors and Nanostructures, Energy Center (CRTEn), Route Tourisitique Soliman, BP 95, Hammam-Lif 2050, Tunisia
A. Bardaoui
Affiliation:
Laboratory of Photovoltaic, Semiconductors and Nanostructures, Energy Center (CRTEn), Route Tourisitique Soliman, BP 95, Hammam-Lif 2050, Tunisia
M. Machhout
Affiliation:
Laboratory of Electronic and Microelectronic, Faculty of Sciences of Monastir, Monastir, Tunisia
R. Chtourou
Affiliation:
Laboratory of Photovoltaic, Semiconductors and Nanostructures, Energy Center (CRTEn), Route Tourisitique Soliman, BP 95, Hammam-Lif 2050, Tunisia
H. Ezzaouia
Affiliation:
Laboratory of Photovoltaic, Semiconductors and Nanostructures, Energy Center (CRTEn), Route Tourisitique Soliman, BP 95, Hammam-Lif 2050, Tunisia
Get access

Abstract

In this paper we investigate and optimize the design of an OR gate all optical circuit based on silicon photonic crystals. The OR gate is formed by two ring resonators placed between three waveguides, obtained by removing specific rods from the photonic-crystal structure. To optimize the design parameters, the fill factor (r/a), corresponding to the ratio between the rod radius “r”’ and the inter-rod lattice “a’’, was varied using the plane wave expansion method. The Q-factor has been determined to achieve the optimal performance of the ring resonators. The optical properties and the normalized transmission spectra for the proposed gate based on the photonic-crystal ring resonators have been calculated by the finite difference time domain (FDTD) technique. We have noted that the two rings must be symmetric to the central waveguide to obtain the OR gate function in the output.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fraga, W.B., Menezes, J.W.M., Silva, M.G., Sobrinho, C.S., Sombra, A.S.B., J. Opt. Commun. 262, 32 (2006)CrossRef
Rostami, A., Rostami, G., Opt. Commun. 228, 39 (2003)CrossRef
Igarashi, K., Kikuchi, K., IEEE J. Sel. Top. Quantum Electron. 14, 551 (2008)CrossRef
Wu, Y.D., Shih, T.T., Chen, M.H., Opt. Express 16, 248 (2008)CrossRef
Pereira, S., Chak, P., Sipe, J.E., Opt. Lett. 28, 444 (2003)CrossRef
Li, Z., Chen, Z., Li, B., Opt. Express 13, 1033 (2005)CrossRef
Fujisawa, T., Koshiba, M., J. Opt. Soc. Am. B 23, 684 (2006)CrossRef
Andalib, P., Granpayeh, N., J. Opt A: Pure Appl. Opt. 11, 1 (2009)CrossRef
Wang, J., Sun, J., Sun, Q., Opt. Lett. 31, 1711 (2006)CrossRef
Wang, J., Sun, J., Sun, Q., IEEE Photon. Technol. Lett. 19, 541 (2007)CrossRef
Bravo-Abad, J., Rodriguez, A., Bermel, P., Johnson, S.G., Joannopoulos, J.D., Soljacic, M., Opt. Express 15, 16161 (2007)CrossRef
Kim, S.-H., Ryu, H.Y., Park, H.G., Kim, G.-H., Choi, Y.-S., Lee, Y.H., Appl. Phys. Lett. 81, 2499 (2002)CrossRef
Dinesh Kumar, V., Srinivas, T., Selvarajan, A., Photon. Nanostruct 2, 199 (2004)CrossRef
Ahmadi Tameh, T., Memarzadeh Isfahani, B., Granpayeh, N., Maleki Javan, A.R., in PIERS Proc., Moscow, Russia, 2009, pp. 18661869
Qiang, Z., Zhou, W., Opt. Express 15, 1823 (2007)CrossRef
Johnson, S.G., Mekis, A., Fan, S., Joannopoulos, J.D.J., Comput. Sci. Eng. 3, 38 (2001)CrossRef
Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Opt. Express 3, 4 (1998)CrossRef
Fan, S., Haus, H.A., Villeneuve, P.R., Joannopoulos, J.D., Phys. Rev. 59, 15882 (1999)CrossRef