Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-30T12:27:30.749Z Has data issue: false hasContentIssue false

Design and characterization of high voltage devices integrated in a standard CMOS technology

Published online by Cambridge University Press:  15 November 2001

B. Villard
Affiliation:
Atmel ES2, 13500 Rousset, France
F. Calmon
Affiliation:
Centre de Génie Électrique de Lyon, Institut National des Sciences Appliquées de Lyon, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
C. Gontrand*
Affiliation:
Centre de Génie Électrique de Lyon, Institut National des Sciences Appliquées de Lyon, 20 avenue A. Einstein, 69621 Villeurbanne Cedex, France
Get access

Abstract

A fully silicon CMOS compatible high voltage (H-V) integrated circuit has been developed that features 5-V high performance digital CMOS with H-V devices. The high voltage device has to support voltage drop upper 50 V between drain and source, both for NMOS and PMOS transistors. It will be placed only in the input and output circuit, for interface application. A lateral diffusion MOS (LDMOS) structure has been chosen, for its compatibility with 5 V CMOS devices. Two specific implants are introduced into the standard process. They create the high voltage N and P junctions. Numerical simulations are performed to determine specific implant characteristics. Moreover, a two-dimensional simulator gives best LDMOS dimensions. A process control monitor has been done according to these results. After the technological realization, a quantitative electrical characterization, as maximal breakdown voltage, determines the best architecture. These devices are modeled by the MOS SPICE2G Level3, which gives sufficient results for digital applications. A simple circuit, a 5 V-50 V buffer, is simulated, realized and characterized, to conclude this work.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

I. Wacyk, M. Amato, V. Rumennik, ISSCC Dig. Tech. Papers, 16 (1986).
Mukherjiee, S., Amato, M., Wacyk, I., Rumennik, V., IEDM Tech. Dig. 2, 778 (1987).
Q. Huang, G. Gehan, A.J. Amaratunga, J. Humphrey, E.M.S. Narayanan, W.I. Milne, C.M. Starbuck, IEEE Electron Devices Lett. 13, 1676; 575 (1991).
Z. Parpia, C.A.T. Salama, IEEE Trans. Electron Devices ED-37, 789 (1990).
M. Bouanane, Conception et optimisation de composants DMOS latéraux haute tension en technologie RESURF, Ph.D. thesis, Université Paul Sabatier, Toulouse, 1992, 143 p.
C. Mori, G. Crisenza, P. Picco, J. Phys. 49 (Supplément au n $^\circ$ 9), 753 (1988).
Dolny, G., Nostrand, G., IEDM 2, 789 (1990).
ATLAS and SUPREM, 1D/2D device and process framework, User's manual, Silvaco International, 1995. APS Link not valid for this citation.
S. Selberherr, Analysis and Simulation of Semiconductor Devices (Spinger-Verlag, Wien-New-York, 1984).
A. Nezar, C.A.T. Salama, IEEE Trans. Electron Devices ED-38, 1676 (1991).
L.W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuit, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA 947, 1975.
T. Myono, E. Nishibe, S. Kikuchi, T. Suzuki, Y. Sasaki, K. Itoh, H. Kobayashi, Modeling and Parameter Extraction Technique for High-Voltage MOS device, Proc. of International Symposium on Circuits and Systems, Orlando, Florida, June 1999.