Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T04:39:14.868Z Has data issue: false hasContentIssue false

Comparative study of UV radiation hardness of n+p and p+n duo-lateral position sensitive detectors

Published online by Cambridge University Press:  15 October 2014

Omeime Xerviar Esebamen*
Affiliation:
Department of Information Technology and Media, Mid Sweden University, Holmsgatan 10, SE-85170 Sundsvall, Sweden
Göran Thungström
Affiliation:
Department of Information Technology and Media, Mid Sweden University, Holmsgatan 10, SE-85170 Sundsvall, Sweden
Hans-Erik Nilsson
Affiliation:
Department of Information Technology and Media, Mid Sweden University, Holmsgatan 10, SE-85170 Sundsvall, Sweden
Anders Lundgren
Affiliation:
SiTek Electro Optics, Ögärdesvägen 13A, SE-43330 Partille, Sweden
*
Get access

Abstract

We report experimental results on the degree of radiation damage in two duo-lateral position sensitive detectors (LPSDs) exposed to 193 nm and 253 nm ultraviolet (UV) beam. One of the detectors was an in-house fabricated n+p LPSD and the other was a commercially available p+n LPSD. We report that at both wavelengths, the degradation damage from the UV photons absorption caused a much more significant deterioration in responsivity in the p+n LPSD than in the n+p LPSD. By employing a simple method, we were able to visualize the radiation damage on the active area of the LPSDs using 3-dimensional graphs. We were also able to characterize the impact of radiation damage on the linearity and position error of the detectors.

Type
Fast Track Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mann, H.M., Yntema, J.L., IEEE Trans. Nucl. Sci. 11, 201 (1964)CrossRef
Dearnaley, G., IEEE Trans. Nucl. Sci. 10, 106 (1963)CrossRef
Tian, M., Mi, J., Shi, J., Wei, N., Zhan, L., Huang, W., Zuo, Z., Wang, C., Luo, X., Optoelectron. Lett. 10, 24 (2014)CrossRef
Radu, R., Fretwurst, E., Klanner, R., Lindstroem, G., Pintilie, I., Nucl. Instrum. Methods Phys. Res.: A Accel. Spectrom. Detect. Assoc. Equip. 730, 84 (2013)CrossRef
Zhang, J., Fretwurst, E., Klanner, R., Perrey, H., Pintilie, I., Poehlsen, T., Schwandt, J., J. Instrum. 6, C11013 (2011)CrossRef
Kinomura, A., Suzuki, R., Ohdaira, T., Oshima, N., O’Rourke, B.E., Nishijima, T., J. Phys.: Conf. Ser. 443, 012043 (2013)
Auffray, E., Barysevich, A., Fedorov, A., Korjik, M., Koschan, M., Lucchini, M., Mechinski, V., Melcher, C.L., Voitovich, A., Nucl. Instrum. Methods Phys. Res.: A Accel. Spectrom. Detect. Assoc. Equip. 721, 76 (2013)CrossRef
Korde, R., Ojha, A., Braasch, R., English, T.C., IEEE Trans. Nucl. Sci. 36, 2169 (1989)CrossRef
Xu, L., Jie, W., Zha, G., Xu, Y., Zhao, X., Feng, T., Luo, L., Zhang, W., Nan, R., Wang, T., CrystEngComm. 15, 10304 (2013)CrossRef
Doke, T., Kikuchi, J., Yamaguchi, H., Yamaguchi, S., Yamamura, K., Nucl. Instrum. Methods Phys. Res.: A Accel. Spectrom. Detect. Assoc. Equip. 261, 605 (1987)CrossRef
Borchi, E., Macii, R., Bruzzi, M., Scaringella, M., Nucl. Instrum. Methods Phys. Res.: A Accel. Spectrom. Detect. Assoc. Equip. 658, 121 (2011)CrossRef
Oldham, T., Ionizing Radiation Effects in MOS Oxides (World Scientific, New Jersey USA, 2000)CrossRefGoogle Scholar
Li, F.M., Nixon, O., Nathan, A., IEEE Trans. Electron Devices 51, 2229 (2004)CrossRef
Andersson, H., Thungström, G., Lundgren, A., Nilsson, H.-E., Nucl. Instrum. Methods Phys. Res.: A Accel. Spectrom. Detect. Assoc. Equip. 531, 140 (2004)CrossRef
Hamamatsu, Hamamatsu Document library, 2010. [Online]. Available: http://www.hamamatsu.com/resources/pdf/ssd/psd_techinfo_e.pdf [Accessed: 10-Feb-2014]
Petersson, G.P., Lindholm, L.-E., IEEE J. Solid-State Circuits 13, 392 (1978)CrossRef
Andersson, H.A., Mattsson, C.G., Thungström, G., Lundgren, A., Nilsson, H.-E., Nucl. Instrum. Methods Phys. Res.: A Accel. Spectrom. Detect. Assoc. Equip. 563, 150 (2006)CrossRef
Wang, W., Busch-Vishniac, I.J., IEEE Trans. Electron Devices 36, 2475 (1989)CrossRef
Flicker, H., Loferski, J., Scott-Monck, J., Phys. Rev. 128, 2557 (1962)CrossRef
Lu, Y.F., Choi, W.K., Aoyagi, Y., Kinomura, A., Fujii, K., J. Appl. Phys. 80, 7052 (1996)CrossRef
Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001)CrossRef
Fiori, C., Devine, R.A.B., Meilland, P., J. Appl. Phys. 58, 1058 (1985)CrossRef
Casse, G., Allport, P.P., Hanlon, M., Improving the radiation hardness properties of silicon detectors using oxygenated n-type and p-type silicon, in 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems, RADECS 99 (Cat. No. 99TH8471, Abbaye de Fontevraud, France), pp. 114119
Esebamen, O.X., Nilsson, H.-E., Thungström, G., Lundgren, A., IET Optoelectron. (2014), DOI: 10.1049/iet-opt.2014.0002
Moll, M., Recent advances in the development of radiation tolerant silicon detectors for the super-Lhc, in Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications – Proceedings of the 11th Conference, Villa Olmo, Como, Italy, pp. 2010, 101110CrossRefGoogle Scholar
Brower, K.L., Phys. Rev. B 38, 9657 (1988)CrossRef
Lai, S.K., J. Appl. Phys. 54, 2540 (1983)CrossRef
Green, M.A., Keevers, M.J., Prog. Photovolt. Res. Appl. 3, 189 (1995)CrossRef
Nakajima, H., Sumi, K., Inujima, H., IEEE Trans. Instrum. Meas. 59, 3041 (2010)CrossRef