Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:00:08.590Z Has data issue: false hasContentIssue false

The charge generation layer incorporating two p-doped hole transport layers for improving the performance of tandem organic light emitting diodes

Published online by Cambridge University Press:  20 August 2014

Dashan Qin*
Affiliation:
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
Mingxia Wang
Affiliation:
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
Yuhuan Chen
Affiliation:
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
Lei Chen
Affiliation:
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
Guifang Li
Affiliation:
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
Wenbo Wang
Affiliation:
Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P.R. China
Get access

Abstract

We report the charge generation layer (CGL) structure comprising of Li2CO3 doped bathocuproine (BCP:Li2CO3)/MoO3 doped 4,4-N,N-bis [N-1-naphthyl-N-phenyl-amino]biphenyl (NPB:MoO3)/MoO3 doped 4,4′-N,N′-dicarbazole-biphenyl (CBP:MoO3) for tandem organic light emitting diodes (TOLEDs). Compared to the TOLED using the conventional CGL structure of BCP:Li2CO3/20 nm CBP:MoO3, the one using the CGL structure of BCP:Li2CO3/5 nm NPB:MoO3/15 nm CBP:MoO3 showed increased electrical and luminous properties, mostly because the introduction of the higher-conductivity NPB:MoO3 relative to CBP:MoO3 could improve the current conduction in the CGL structure. Whereas, the performance of the CGL structure of BCP:Li2CO3/x nm NPB:MoO3/20- x nm CBP:MoO3 decreased with x increasing, mostly due to the fact that the CBP:MoO3 became depleted of mobile holes upon contacting p-doped NPB: the smaller thickness of CBP:MoO3, the worse conductivity for it. We provide some in-depth insights on designing the high-performance CGLs for TOLEDs.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kido, J., Matsumoto, T., Nakada, T., Endo, J., Mori, K., Kawamura, N., Yokoi, A., SID Int. Symp. Digest Tech. Papers 34, 964 (2003)CrossRef
Chen, Y.H., Chen, J.S., Ma, D.G., Yan, D.H., Wang, L.X., Zhu, F.R., Appl. Phys. Lett. 98, 243309 (2011)CrossRef
Chan, M.Y., Lai, S.L., Lau, K.M., Fung, M.K., Lee, C.S., Lee, S.T., Adv. Funct. Mater. 17, 2509 (2007)CrossRef
Liao, L.S., Klubek, K.P., Appl. Phys. Lett. 92, 223311 (2008)CrossRef
Qi, X., Li, N., Forrest, S.R., J. Appl. Phys. 107, 014514 (2010)CrossRef
Sun, J.X., Zhu, X.L., Peng, H.J., Wong, M., Kwok, H.S., Appl. Phys. Lett. 87, 093504 (2005)CrossRef
Cho, T.Y., Lin, C.L., Wu, C.C., Appl. Phys. Lett. 88, 111106 (2006)CrossRef
Lee, S., Lee, J.H., Lee, J.H., Kim, J.J., Adv. Funct. Mater. 22, 855 (2012)CrossRef
Zhang, H.M., Dai, Y.F., Ma, D.G., J. Phys. D: Appl. Phys. 41, 102006 (2008)CrossRef
Tsutsui, T., Terai, M., Appl. Phys. Lett. 84, 440 (2004)CrossRef
Kröger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., Kahn, A., Appl. Phys. Lett. 95, 123301 (2009)CrossRef
Hamwi, S., Meyer, J., Kroger, M., Winkler, T., Witte, M., Riedl, T., Kahn, A., Kowalsky, W., Adv. Funct. Mater. 20, 1762 (2010)CrossRef
Yang, J.P., Xiao, Y., Deng, Y.H., Duhm, S., Ueno, N., Lee, S.T., Li, Y.Q., Tang, J.X., Adv. Funct. Mater. 22, 600 (2012)CrossRef
Meyer, J., Kroger, M., Hamwi, S., Gnam, F., Riedl, T., Kowalsky, W., Kahn, A., Appl. Phys. Lett. 96, 193302 (2010)CrossRef
Leem, D.S., Lee, J.H., Kim, J.J., Kang, J.W., Appl. Phys. Lett. 93, 103304 (2008)CrossRef
Shin, W.J., Lee, J.Y., Kim, J.C., Yoon, T.H., Kim, T.S., Song, O.K., Org. Electron. 9, 333 (2008)CrossRef
Hamwi, S., Meyer, J., Winkler, T., Riedl, T., Kowalsky, W., Appl. Phys. Lett. 94, 253307 (2009)CrossRef
Qin, D.S., Liu, J.S., Chen, Y.H., Chen, L., Quan, W., Li, G.F., Semicond. Sci. Technol. 27, 045012 (2012)CrossRef
Endo, J., Matsumoto, T., Kido, J., Jpn J. Appl. Phys. 41, 358 (2002)CrossRef
Partridge, R.H., Polymer 24, 733 (1983)CrossRef
Kroger, M., Hamwi, S., Meyer, J., Dobbertin, T., Riedl, T., Kowalsky, W., Johannes, H.H., Phys. Rev. B 75, 235321 (2007)CrossRef
Liu, J.S., Chen, Y.H., Qin, D.S., Cheng, C.R., Quan, W., Chen, L., Li, G.F., Semicond. Sci. Technol. 26, 095011 (2011)CrossRef
Park, T.J., Kim, S.Y., Jeon, W.S., Park, J.J., Pode, R., Jang, J., Kwon, J.H., J. Nanosci. Nanotechnol. 8, 5606 (2008)CrossRef
Xie, G.H., Meng, Y.L., Wu, F.M., Tao, C., Zhang, D.D., Liu, M.J., Xue, Q., Chen, W., Zhao, Y., Appl. Phys. Lett. 92, 093305 (2008)CrossRef
Kroger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., Kahn, A., Org. Electron. 10, 932 (2009)CrossRef