Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T19:29:49.807Z Has data issue: false hasContentIssue false

Characteristics of tuneable optical filters using optical ring resonator with PCF resonance loop

Published online by Cambridge University Press:  09 May 2012

K. Shalmashi
Affiliation:
Physics Group, Islamic Azad University, Tehran Shomal Branch, Tehran, Islamic Republic of Iran
F.E. Seraji*
Affiliation:
Optical Communication Group, Iran Telecom Research Center, Tehran, Islamic Republic of Iran
M.R. Mersagh
Affiliation:
Physics Group, Islamic Azad University, Tehran Shomal Branch, Tehran, Islamic Republic of Iran
Get access

Abstract

A theoretical analysis of a tuneable optical filter is presented by proposing an optical ring resonator (ORR) using photonic crystal fiber (PCF) as the resonance loop. The influences of the characteristic parameters of the PCF on the filter response have been analyzed under steady-state condition of the ORR. It is shown that the tuneability of the filter is mainly achieved by changing the modulation frequency of the light signal applied to the resonator. The analyses have shown that the sharpness and the depth of the filter response are controlled by parameters such as amplitude modulation index of applied field, the coupling coefficient of the ORR, and hole-spacing and air-filling ratio of the PCF, respectively. When transmission coefficient of the loop approaches the coupling coefficient, the filter response enhances sharply with PCF parameters. The depth and the full-width at half-maximum (FWHM) of the response strongly depend on the number of field circulations in the resonator loop. With the proposed tuneability scheme for optical filter, we achieved an FWHM of ~1.55 nm. The obtained results may be utilized in designing optical add/drop filters used in WDM communication systems.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stokes, L.F., Chodorow, M., Shaw, H.J., Opt. Lett. 7, 288 (1982)CrossRef
Pandian, G.S., Seraji, F.E., IEEE Proc. J. 138, 235 (1991)
Sumetsky, M., Optics Express 12, 2303 (2004)CrossRef
Ma, H., Wang, S., Jin, Z., Opt. Commun. 281, 2509 (2008)CrossRef
Soundra Pandian, G., Seraji, F.E., J. Mod. Opt. 39, 991 (1992)CrossRef
Boyd, R.W., Heebner, J.H., Appl. Opt. 40, 5742 (2001)CrossRef
Chu, S.T., Little, B.E., Pan, W., Kaneko, T., Sato, S., Kokubun, Y., IEEE Photon. Technol. Lett. 11, 691 (1999)CrossRef
Mandal, S., Dasgupta, K., Basak, T.K., Ghosh, S.K., Opt. Commun. 264, 97 (2006)CrossRef
Saeung, P., Yupapin, P.P., Optik 119, 465 (2008)CrossRef
Dilwali, S., Pandian, G.S., IEEE Photon. Technol. Lett. 4, 942 (1992)CrossRef
Shen, H., Chen, J.-P., Li, X.-W., Wang, Y.-P., Opt. Commun. 262, 200 (2006)CrossRef
Dumeige, Y., Arnaud, C., Féron, P., Opt. Commun. 250 376, (2005) Erratum, Opt. Commun. 272, 279 (2007)CrossRef
Yupapin, P.P., Optik 119 492 (2008)CrossRef
Schwelb, O., Opt. Commun. 265, 175 (2006)CrossRef
Li, J.Q., Li, L., Zhao, J.Q., Li, C.F., Opt. Commun. 256, 319 (2005)CrossRef
Rostami, A., Microelectronics 37, 976 (2006)CrossRef
Yupapin, P.P., Chunpang, P., Opt. Laser Technol. 40, 273 (2008)CrossRef
Lima, J.L.S., Sabόia, K.D.A., Sales, J.C., Menezes, J.W.M., de Fraga, W.B., Guimarães, G.F., Sombra, A.S.B., Opt. Fiber Technol. 14 79 (2008)CrossRef
Van, V., Ibrahim, T.A., Absil, P.P., Johnson, F.G., Grover, R., Ho, P.T., IEEE J. Sel. Top. Quantum Electron. 8, 705 (2002)CrossRef
Tazawa, H., Steier, W.H., IEEE Photon. Technol. Lett. 18, 211 (2006)CrossRef
Little, B.E., Chu, S.T., Pan, W., Kokubun, Y., IEEE Photon. Technol. Lett 12, 320 (2000)
Seraji, F.E., Jpn J. Appl. Phys. 32, 1661 (1993)CrossRef
Seraji, F.E., Pandian, G.S., J. Mod. Opt. 38, 671 (1991)CrossRef
Pandian, G.S., Seraji, F.E., Jpn J. Appl. Phys. 29, 1967 (1990)CrossRef
Ying, D., Ma, H., Jin, Z., Opt. Fiber Technol. 15, 15 (2009)CrossRef
Rabus, D.G., Hamacher, M., Heidrich, H., Jpn J. Appl. Phys. 41, 1186 (2002)CrossRef
Heebner, J., Grover, R., Ibrahim, T., Optical Microresonators: Theory, Fabrication, and Applications, 1st edn. (Springer, 2007)Google Scholar
Seraji, F.E., Anzabi, L.C., “Design of Micro Loop Ring Resonator Tunable Filter Based on PCF”, in 7th Int. Conf. Opt. Commu. Net., ICOCN, 2008, Singapore, 2008
Jang, H.S., Park, K.N., Lee, K.S., Appl. Opt. 46, 3688 (2007)CrossRef
Kim, H., Kim, J., Paek, U.-C., Lee, B.H., Kim, K.T., Opt. Lett. 29, 1194 (2004)CrossRef
Seraji, F.E., Rashidi, M., Khasheie, V., Chin. Opt. Lett. 4, 442 (2006)
Koshiba, M., Saitoh, K., Optics Express 11, 1746 (2003)CrossRef
Birks, T.A., Knight, J.C., Russell, P.St.J., Opt. Lett. 22, 961 (1997)CrossRef
Vazquez, C., Vargas, S., Pena, J.M.S., Corredera, P., IEEE Photon. Technol. Lett. 15, 1085 (2003)CrossRef
Green, W.M.J., Lee, R.K., DeRose, G.A., Scherer, A., Yariv, A., Optics Express 13, 1651 (2005)CrossRef
Vazquez, C., Vargas, S.E., Pena, J.M.S., IEEE J. Lightwave Technol. 23, 2555 (2005)CrossRef
Abdulla, S.M.C., Kauppinen, L.J., Dijkstra, M., de Boer, M.J., Berenschot, E., Jansen, H.V., de Ridder, R.M., Krijnen, G.J.M., Optics Express 19, 15864 (2011)CrossRef
Nielsen, M.D., Mortensen, N.A., Albertsen, M., Folkenberg, J.R., Bjarklev, A., Bonacinni, D., Optics Express 12, 1775 (2004)CrossRef
Li, Y.F., Yao, Y.H., Hu, M.L., Chai, L., Wang, C.Y., Appl. Opt. 47, 399 (2008)CrossRef
Seraji, F.E., Prog. Quantum Electron. 33, 1 (2009)CrossRef