Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T01:23:42.172Z Has data issue: false hasContentIssue false

Calorimetric tunneling study of heat generation in metal-vacuum-metal tunnel junctions

Published online by Cambridge University Press:  18 August 2005

I. Bat'ko*
Affiliation:
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice, Slovakia
M. Bat'ková
Affiliation:
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice, Slovakia
Get access

Abstract

We propose a novel calorimetric tunneling (CT) experiment allowing exact determination of heat generation (or heat sinking) in individual tunnel junction (TJ) electrodes, which opens new possibilities in the field of design and development of experimental techniques. Using such an experiment we have studied the process of heat generation in normal-metal electrodes of the vacuum-barrier tunnel junction (VBTJ). The results show there exists a dependence of the mutual redistribution of the heat on applied bias voltage and the direction of tunnel current, although the total heat generated in the tunnel process is equal to the Joule heat, as expected. Moreover, the present study indicates generated heat represents the energy of non-equilibrium quasiparticles coming from inelastic electron processes accompanying the process of elastic tunneling.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duif, A.M., Jansen, A.G.M., Wyder, P., J. Phys.-Condens. Mat. 1, 3157 (1989)
Gerlach-Meyer, U., Queisser, H.J., Phys. Rev. Lett. 51, 1904 (1983) CrossRef
Reiffers, M., Flachbart, K., Jánoš, Š., JETP Lett. 44, 298 (1986)
Bogachek, E.N., Kulik, I.O., Shkorbatov, A.G., Sov. J. Low Temp. Phys. 11, 656 (1985)
Hebard, E.F., Phys. Rev. B 15, 1751 (1976) CrossRef
Kautz, R.L., Zimmerli, G., Martinis, J.M., J. Appl. Phys. 73, 2386 (1992) CrossRef
Nahum, M., Eiles, T.M., Martinis, J.M., Appl. Phys. Lett. 65, 3123 (1994)
E.L. Wolf, in Principles of Electron Tunneling Spectroscopy (Oxford University Press, Oxford, 1985)
Schutz, R.J., Rev. Sci. Instrum. 45, 548 (1974) CrossRef
De Yoreo, J.J., Knaak, W., Meissner, M., Pohl, R.O., Phys. Rev. B 34, 8828 (1986) CrossRef
VBTJ Control Electronics Ver. 1.0 and Piezo z-positioner used in presented experiments were developed and provided by Laboratories of Applied Research, Atletická 16, 040 01 Košice, Slovakia
M. Mei $\ss$ ner (private communication); For details, see W. Knaak, Ph.D. thesis, Technical University Berlin, 1986
We consider $n(E) = n_{1}(E) - n_{2}(E)$ , where $n_{1}(E)$ and $n_{2}(E)$ are numbers of tunneled electrons per one second within the energy interval $\langle E, E+dE \rangle$ from metal N to metal P and from metal P to metal N, respectively
Hoffmann, G., Kliewer, J., Berndt, R., Phys. Rev. Lett. 87, 176803 (2001) CrossRef
Bat, I.'ko, M. Bat'ková, Czech. J. Phys. 54, D619 (2004)
Blonder, G.E., Tinkham, M., Klapwijk, T.M., Phys. Rev. B 25, 4515 (1982) CrossRef
Meschke, M., Pekola, J. P., Gay, F., Rapp, R. E., Godfrin, H., J. Low Temp. Phys. 134, 1119 (2004) CrossRef
Žutić, I., Fabian, J., Das Sarma, S., Rev. Mod. Phys. 76, 323 (2004) CrossRef