Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T12:03:46.969Z Has data issue: false hasContentIssue false

A broadband omnidirectional absorber based on a hetero-structure composed of epsilon-negative material and mu-negative material

Published online by Cambridge University Press:  10 June 2014

Jian-Dong Liu
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Shao-Bin Liu
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Xiang-Kun Kong*
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China
Yi Dai
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
Get access

Abstract

A broadband omnidirectional absorber which is realized by heterostructures containing a collision plasma layer and a zero −  mirror is theoretically investigated. A collision plasma layer and an appropriate dielectric layer are put on the top of the PC. It is shown to absorb roughly 70% of all available electromagnetic wave in a relative omnidirectional absorption band width 244 MHz. The absorption band edge of the PC is influenced by the range of the reflection band gap. Meanwhile, the absorption range for the transverse magnetic (TM) wave decreases at large incident angle. Compared with some previous designs, our proposed structure has a relative flatter total absorption spectrum over a broad microwave frequency range and using a zero −  gap as a mirror is insensitive to the incident angle. This kind of heterostructure offers additional opportunities to design novel optoelectronic devices.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, Z.P. et al., Appl. Opt. 50, 1850 (2011)CrossRef
Garcia-Vidal, F.J., Nat. Photon. 2, 215 (2008)CrossRef
Wu, N. et al., JOSA B 30, 1161 (2013)CrossRef
Feng, Q. et al., Opt. Lett. 37, 2133 (2012)CrossRef
Ma, Y. et al., Opt. Lett. 36, 945 (2011)CrossRef
Xiong, H. et al., J. Appl. Phys. 114, 064109 (2013)CrossRef
Popov, E., Enoch, S., Bonod, N., Opt. Express 17, 6770 (2009)CrossRef
Zhang, B. et al., Opt. Express 19, 15221 (2011)CrossRef
Pu, M. et al., Opt. Express 19, 17413 (2011)CrossRef
Barnes, W.L., Dereux, A., Ebbesen, T.W., Nature 424, 824 (2003)CrossRef
Wang, G., Lu, H., Liu, X., Opt. Express 20, 20902 (2012)CrossRef
Wang, G., Lu, H., Liu, X., Appl. Phys. Lett. 101, 013111 (2012)CrossRef
Gong, Y. et al., Opt. Express 19, 9759 (2011)CrossRef
Zhang, Z. et al., JOSA B 27, 909 (2010)CrossRef
Gong, Y. et al., Opt. Express 19, 10193 (2011)CrossRef
Zhou, J., Jin, L., Pun, E.Y.B., Opt. Lett. 37, 2613 (2012)CrossRef
Du, G. et al., JOSA B 27, 1757 (2010)CrossRef
Kong, X. et al., J. Electromagn. Waves Appl. 27, 945 (2013)CrossRef
Du, G., Zhang, L., Jiang, H., J. Appl. Phys. 109, 063525 (2011)CrossRef
Li, J. et al., Phys. Rev. Lett. 90, 083901 (2003)CrossRef
Shadrivov, I.V., Sukhorukov, A.A., Kivshar, Y.S., Appl. Phys. Lett. 82, 3820 (2003)CrossRef
Eleftheriades, G.V., Iyer, A.K., Kremer, P.C., IEEE Trans. Microwave Theor. Tech. 50, 2702 (2002)CrossRef
Alù, A., Engheta, N., IEEE Trans. Antennas Propag. 51, 2558 (2003)CrossRef
Atwater, H.A., Polman, A., Nat. Mater. 9, 205 (2010)CrossRef
Watts, C.M., Liu, X., Padilla, W.J., Adv. Mat. 24, OP98 (2012)
Bonod, N. et al., Opt. Express 16, 15431 (2008)CrossRef
Le Perchec, J. et al., Phys. Rev. Lett. 100, 066408 (2008)CrossRef
Teperik, T.V. et al., Nat. Photon. 2, 299 (2008)CrossRef
Hao, J. et al., Appl. Phys. Lett. 96, 251104 (2010)CrossRef
Liu, N. et al., Nano Lett. 10, 2342 (2010)CrossRef
Zhou, H. et al., Progress Electromagn. Res. 119, 449 (2011)CrossRef
Berenger, J.P., J. Comput. Phys. 114, 185 (1994)CrossRef