Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T06:56:45.906Z Has data issue: false hasContentIssue false

Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms *

Published online by Cambridge University Press:  18 February 2013

Jerzy Mizeraczyk
Affiliation:
Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk, Poland Department of Marine Electronics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland
Mirosław Dors
Affiliation:
Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk, Poland
Mariusz Jasiński
Affiliation:
Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk, Poland
Bartosz Hrycak
Affiliation:
Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk, Poland
Dariusz Czylkowski*
Affiliation:
Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk, Poland
Get access

Abstract

This work was aimed at experimental investigations of deactivation of different types of microorganisms by using atmospheric pressure low-temperature microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. Its main advantages are simple and cheap construction, portability and possibility of penetrating into small cavities. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The quality as well as quantity tests were performed. The influence of the microorganism type, oxygen concentration, absorbed microwave power, microplasma treatment time and MmPS distance from the treated sample on the microorganism deactivation efficiency was investigated. All experiments were performed for Ar microplasma and Ar/O2 microplasma with up to 3% of O2. Absorbed microwave power was up to 50 W. The Ar flow rate was up to 10 L/min. The sample treatment time was up to 10 s.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)”, Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

References

Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., von Woedtke, Th., Brandenburg, R., von dem Hagen, T., Weltmann, K.D., J. Phys. D: Appl. Phys. 44, 013002 (2011)CrossRef
Lee, H.W., Park, G.Y., Seo, Y.S., Im, Y.H., Shim, S.B., Lee, H.J., J. Phys. D: Appl. Phys. 44, 053001 (2011)CrossRef
Becker, K., Koutsospyros, A., Yin, S.-M., Christodoulatos, C., Abramzon, N., Joaquin, J.C., Brelles-Mariño, G., Plasma Phys. Control. Fusion 47, B513 (2005)CrossRef
Iza, F., Kim, G.J., Lee, S.M., Lee, J.K., Walsh, J.L., Zhang, Y.T., Kong, M.G., Plasma Processes Polym., 5, 322 (2008)CrossRef
Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., Yahia, L.H., Int. J. Pharm. 226, 1 (2001)CrossRef
Moisan, M., Barbeau, J., Crevier, M.-Ch., Pelletier, J., Philip, N., Saoudi, B., Pure Appl. Chem. 74, 349 (2002)CrossRef
von Keudell, A., Awakowicz, P., Benedikt, J., Raballand, V., Yanguas-Gil, A., Opretzka, J., Flotgen, C., Reuter, R., Byelykh, L., Halfmann, H., Stapelmann, K., Denis, B., Wunderlich, J., Muranyi, P., Rossi, F., Kylian, O., Hasiwa, N., Ruiz, A., Rauscher, H., Sirghi, L., Comoy, E., Dehen, C., Challier, L., Deslys, J.P., Plasma Processes Polym., 7, 327 (2011)CrossRef
Lee, K.-Y., Park, B.J., Lee, D.H., Lee, I.-S., Hyun, S.O., Chung, K.-H, Park, J.-C., Surf. Coat. Technol. 193, 35 (2005)CrossRef
Laroussi, M., Leipold, F., Int. J. Mass Spectrom. 255, 81 (2004)CrossRef
Yang, L., Chen, J., Gao, J., Guo, Y., Appl. Surf. Sci. 255, 8960 (2009)CrossRef
Gregório, J., Leroy, O., Leprince, P., Alves, L.L., Boisse-Laporte, C., IEEE Trans. Plasma Sci. 37, 797 (2009)CrossRef
Kanazawa, S., Daidai, R., Akamine, S., Ohkubo, T., Surf. Coat. Technol. 202, 5275 (2008)CrossRef
Benedikt, J., Hofmann, S., Knake, N., Bottner, H., Reuter, R., von Keudell, A., Schulz-von der Gathen, V.,Eur. Phys. J. D 60, 539 (2010)CrossRef
Choi, J., Iza, F., Do, H.J., Lee, J.K., Cho, M.H., Plasma Source Sci. Technol. 18, 025029 (2009)CrossRef
Kim, J., Terashima, K., Appl. Phys. Lett. 86, 191504 (2005)CrossRef
Bilgic, A.M., Engel, U., Voges, A.M., Kuckelheim, M., Broekaer, J.A.C., Plasma Source Sci. Technol. 9, 1 (2000)CrossRef
Goch, M.,Jasińoski, M., Mizeraczyk, J., Zakrzewski, Z., Przeglad Elektrotechniczny (Electr. Rev.) 84, 80 (2008)
Jasiński, M., Kroplewski, L., Zakrzewski, Z., Mizeraczyk, J., Chemicke Listy, 102, S1322 (2008)
Hrycak, B., Jasinoski, M., Mizeraczyk, J., Eur. Phys. J. D 60, 609 (2010)CrossRef
Mizeraczyk, J., Hrycak, B., Jasiński, M., Dors, M., Przeglad Elektrotechniczny (Electr. Rev.) 88, 238 (2012)
http://www.nist.gov/pml/data/asd.cfm (accessed 20 September 2012)
http://www.specair-radiation.net (accessed 20 September 2012)