Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T01:43:54.886Z Has data issue: false hasContentIssue false

An atmospheric pressure plasma source driven by a train of monopolar high voltage pulses superimposed to a dc voltage

Published online by Cambridge University Press:  18 August 2011

O.S. Stoican*
Affiliation:
National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor St., P.O. Box MG36, 077125 Magurele, Romania
*
Get access

Abstract

An atmospheric pressure plasma source supplied by an electrical circuit consisting of two voltage sources in parallel connection is reported. One of them is a low-power self-oscillating flyback converter which produces negative voltage pulses with an amplitude of several kilovolts. The high voltage pulses are necessary to ignite an electrical discharge between the electrodes at atmospheric pressure. An additional dc source delivering several hundreds of volts at a few hundred milliamps is used to sustain the electrical discharge. The circuit configuration allows the control of the discharge current over a wide range, in a simple manner. By using argon as a working gas, a stable plasma plume up to 8 mm long can be obtained either in a transferred or non-transferred arc mode.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Selwyn, G.S., Herrmann, H.W., Park, J., Henins, I., Contrib. Plasma Phys. 41, 610 (2001)3.0.CO;2-L>CrossRef
Laroussi, M., Mendis, D.A., Rosenberg, M., New J. Phys. 5, 41.1 (2003)CrossRef
Becker, K.H., Schoenbach, K.H., Eden, J.G., J. Phys. D: Appl. Phys. 39, R55 (2006)CrossRef
Ostrikov, K., Murphy, A.B., Phys, J., J. Phys. D: Appl. Phys. 40, 2223 (2007)CrossRef
Nozaki, T., Okazaki, K., Plasma Process. Polym. 5, 301 (2008)
Saiepour, M., Harry, J.E., J. Phys. D: Appl. Phys. 23, 1129 (1990)CrossRef
Penghui, G., Hayashi, N., Ihara, S., Satoh, S., Yamabe, C., in Proc. of Hakone 8, Pühajärve, Estonia, 2002, p. 347 Google Scholar
Louste, C., Artana, G., Moreau, E., Touchard, G., J. Electrostat. 63, 615 (2005)CrossRef
Hensel, K., Sato, S., Mizuno, A., Chemické Listy 102, s1318 (2008)
Kruger, C.H., Laux, C.O., Yu, L., Packan, D.M., Pierrot, L., Pure Appl. Chem. 74, 337 (2002)CrossRef
Ben-Yaakov, S., Gulko, M., Giter, A., in Proc. of APEC-1996, vol. 2 (San Jose, CA, 1996), p. 634 Google Scholar
Lister, G.G., Lawler, J.E., Lapatovich, W.P., Godyak, V.A., Rev. Mod. Phys. 76, 541 (2004)CrossRef
Kim, W.S., Cho, B.H., Lee, K.C., in Proc. of APEC-2005, vol. 2 (Austin, TX, 2005), p. 1043 Google Scholar
Hu, Y., Jovanović, M.M., in Proc. of APEC-2007 (Anaheim, CA, 2007), p. 268 Google Scholar
Lio, J.-B., Lin, M.-S., Chen, D.Y., Feng, W.-S., Electron. Lett. 32, 1429 (1996)CrossRef
Irving, B.T., Jovanović, M.M., in Proc. of APEC-2002, vol. 2 (Dallas, TX, 2002), p. 897 Google Scholar
Ferdowsi, M., Emadi, A., Telefus, M., Davis, C., IEEE Trans. Power Electron. 20, 798 (2005)CrossRef
Schütze, A., Jeong, J.Y., Babayan, S.E., Park, J., Selwyn, G.S., Hicks, R.F., IEEE Trans. Plasma Sci. 26, 1685 (1998)CrossRef
Machala, Z., Marode, E., Laux, C.O., Kruger, C.H., J. Adv. Oxid. Technol. 7, 133 (2004)
Whaling, W., Anderson, W.H.C., Carle, M.T., Brault, J.W., Zarem, H.A., J. Res. Natl. Inst. Stand. Technol. 107, 149 (2002)CrossRef
Sansonetti, J.E., Martin, W.C., NIST Handbook of Basic Atomic Spectroscopic Data[Online], http://www.nist.gov/pml/data/handbook/index.cfm
Lisovskiy, V., Booth, J.-P., Landry, K., Douai, D., Cassagne, V., Yegorenkov, V., J. Phys. D: Appl. Phys. 39, 660 (2006)CrossRef
Lisovskiĭ, V.A., Tech. Phys. Lett. 24, 308 (1998)CrossRef