Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T00:30:22.687Z Has data issue: false hasContentIssue false

Selective growth and optical properties of sputtered BaTiO3 films

Published online by Cambridge University Press:  15 March 2000

A. Dazzi
Affiliation:
Laboratoire de Physique, Université de Bourgogne (UMR 5027 du CNRS), bâtiment Mirande, B.P. 47870, 21078 Dijon Cedex, France
A. Gueldry
Affiliation:
Laboratoire de Physique, Université de Bourgogne (UMR 5027 du CNRS), bâtiment Mirande, B.P. 47870, 21078 Dijon Cedex, France
M. Maglione*
Affiliation:
Laboratoire de Physique, Université de Bourgogne (UMR 5027 du CNRS), bâtiment Mirande, B.P. 47870, 21078 Dijon Cedex, France
P. Sibillot
Affiliation:
Laboratoire de Physique, Université de Bourgogne (UMR 5027 du CNRS), bâtiment Mirande, B.P. 47870, 21078 Dijon Cedex, France
P. Mathey
Affiliation:
Laboratoire de Physique, Université de Bourgogne (UMR 5027 du CNRS), bâtiment Mirande, B.P. 47870, 21078 Dijon Cedex, France
P. Jullien
Affiliation:
Laboratoire de Physique, Université de Bourgogne (UMR 5027 du CNRS), bâtiment Mirande, B.P. 47870, 21078 Dijon Cedex, France
Get access

Abstract

we report the growth of BaTiO3 thin films by standard Radio Frequency sputtering. Without any in situ or post annealing, these polycristalline films are oriented relative to the substrate even when it is amorphous. We show that this preferential orientation may be monitored using a DC Bias during the film growth. At room temperature, cubic films of (100) and (110) orientations have been achieved, on fused silica substrate. Some optical waveguiding properties of these films have been studied. The resulting film index is 2.26 and the optical step index at the substrate interface is sharp. This allows the use of standard RF sputtering techniques to monitor oriented BaTiO3 films for linear optical applications.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Scott, J.F., Ferroelectric Rev. 1, 1 (1998).
Kaminov, I.P., IEEE Trans. Microw. Theory Techn. 23, 57 (1975). CrossRef
Alferness, R.C., IEEE Trans. Microw. Theory Techn. 30, 1120 (1982).
Younden, K.E., James, S.W., Eason, R.W., Chandler, P.J., Zhang, L., Townsend, P.D., Optics Lett. 17, 1509 (1992). CrossRef
Bahtat, A., Marco de, M.C. Lucas, B. Jacquier, B. Varrel, M. Bouazaoui, J. Mugnier, Opt. Mat. 7, 173 (1997)
A. Bahtat, M. Bouazaoui, M.C. Marco de Lucas, M. Bahtat, B. Jacquier, J. Mugnier, Rad. Eff. Def. Solids 135, 149(1995).
Kwak, B.S., Zhang, K., Boyd, E.P., Erbill, A., J. Appl. Phys. 69, 767 (1991)
Moretti, P., Helkamp, A., Thevenard, P., Godefroy, G., Mat. Sci. Eng. B 9, 475 (1991). CrossRef
Ishibashi, Y., Tsurumi, T., Oashi, N., Fukunaga, O., Solid State Ionics 108, 91 (1998). CrossRef
Lu, X.M., Zhu, J.S., Zhang, W.Y., Ma, G.Q., Wang, Y.N., Thin Sol. Fi. 274, 165 (1996)
J.Y. Robic, Ph.D. thesis, Paris-Sud, 1975.
Frey, M.H., Pines, D.A., Phys. Rev. B 54, 3158 (1996). CrossRef
Coburn, J.W., Kay, E., J. Appl. Phys. 43, 4965 (1972). CrossRef
Ching Jih Chen, Y. Xu, Ren Xu, J. Mackenzie, Phys. Rev. B 44, 35 (1991).
A.W. Snyder, J.D. Love, Optical waveguide theory (Chapman and Hall, London, 1991).
Tien, P.K., Ulrich, R., J. Opt. Soc. Am. 60, 1325 (1970). CrossRef
White, J.M., Heidrich, P.F., Appl. Optics 15, 151 (1976). CrossRef
Mathey, P., Jullien, P., Optics Commun. 122, 127 (1996). CrossRef