Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T00:27:11.293Z Has data issue: false hasContentIssue false

Preparation and characterization of Au/n-GaSe4/p-Si/Al Schottky-type thin film heterojunctions

Published online by Cambridge University Press:  17 August 2012

M.M. El-Nahass
Affiliation:
Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
I.T. Zedan*
Affiliation:
Basic Science Department, High Institute of Engineering and Technology, El-Arish, 9004 North Sinai, Egypt
A.A. Atta
Affiliation:
Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
Get access

Abstract

GaSe4 films were prepared using thermal evaporation technique onto glass and Si substrates. GaSe4 in both ingot and thin films was studied by hot probe procedure indicated n-type semiconductor. The conductivity activation energy (ΔE) decreased from 0.414 to 0.365 eV with the increase in film thickness from 90 to 500 nm. Investigation of the heterojunction n-GaSe4/p-Si by using characteristics indicated good rectification with rectification ratio of 48 at room temperature and at V = ±1.6 V. The ideality factor decreased from 2.2 to 2.13 while the reverse saturation current decreased from 8.3 × 10−7 A to 3.27 × 10−7 A by the temperature rise from 310 to 363 K. For lower and higher values of applied voltage, Pool-Frenkel and Schottky coefficients were 2.2 × 10−5 and 0.7 × 10−5 eV m−1/2, beside that, Schottky barrier height was found to be 0.4 eV. The thermionic emission mechanism occurs in the low forward voltage range but in the high forward region, the space-charge-limited current (SCLC) controlled by a single trap level is the dominant mechanism. In the reverse direction the Poole-Frenkel mechanism is the operating mechanism. Analysis of C-V characteristics of Au/n-GaSe4/p-Si/Al heterojunction gives the values of effective density of states (N) of 2.4 × 1034 cm−3 and the built-in voltage (Vb) of the junction is 0.78 V.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ilyas, M., Zulfequar, M., Khan, Z.H., Husain, M., Physica B: Condens. Matter 254, 57 (1998)CrossRef
Izumi, T., Nishiwaki, H., Tambo, T., Tatsuyama, C., Appl. Surf. Sci. 570, 104 (1996)
Ueno, K., Takeda, N., Sasaki, K., Koma, A., Appl. Surf. Sci. 38, 113 (1997)
Lague, S.B., Barnes, A.C., Archer, A.D., Howells, W.S., J. Non-Cryst. Solids 89, 205 (1996)
Yoon, C.S., Park, K.H., Kim, D.T., Park, T.Y., Jin, M.S., Oh, S.K., Kim, W.-T., J. Phys. Chem. Solids 62, 1131 (2001)CrossRef
Ilyas, M., Zulfequar, M., Husain, M., J. Mod. Opt. 47, 663 (2000)
Vodopyanov, K.L., Kulevskii, L.A., Opt. Commun. 118, 186 (1995)CrossRef
Mann, A.S., Goyal, D.R., Sharama, S.K., J. Non-Cryst. Solids 183, 186 (1995)CrossRef
Amzallag, J., Benisty, H., Debrus, S., May, M., Eddrief, M., Bourdon, A., Shevy, A., Piccioli, N., Appl. Phys. Lett. 66, 982 (1995)CrossRef
Dahinten, T., Plodereder, U., Seilmeier, A., Vodopyanov, K.L., Allakhverdiev, K.R., Ibragimov, Z.A., IEEE J. Quantum Electron. 29, 2245 (1993)CrossRef
Vodopyanov, K.L., Kulevskii, L.A., Voevodin, V.G., Gribenyukov, A.I., Allakhverdiev, K.R., Kerimov, T.A., Opt. Commun. 83, 322 (1991)CrossRef
Jedrecy, N., Pinchaux, R., Eddrief, M., Phys. Rev. B 56, 9583 (1997)CrossRef
Koebel, A., Zheng, Y., Petroff, J.F., Boulliard, J.C., Capelle, B., Eddrief, M., Phys. Rev. B 56, 12296 (1997)CrossRef
Meng, S., Schroeder, B.R., Olmstead, M.A., Phys. Rev. B 61, 7215 (2000)CrossRef
Meng, S., Schroeder, B.R., Bostwick, A., Olmstead, M., Rotenberg, E., Ohuchi, F.S., Phys. Rev. B 64, 235314 (2001)CrossRef
Rudolph, R., Pettenkofer, C., Klein, A., Jaegermann, W., Appl. Surf. Sci. 167, 122 (2000)CrossRef
Fritsche, R., Wisotzki, E., Islam, A.B.M.O., Thien, A., Klein, A., Jaegermann, W., Rudolph, R., Tonti, D., Pettenkofer, C., Appl. Phys. Lett. 80, 1388 (2002)CrossRef
Thamilselvan, M., Premnazeer, K., Mangalaraj, D., Narayandass, S.K., Yi, J.S., Cryst. Res. Technol. 39, 137 (2004)CrossRef
Evtodiev, I., Caraman, I., Leontie, L., Rusu, D.I., Dafinei, A., Nedeff, V., Lazar, G., Mater. Res. Bull. 47, 794 (2012)CrossRef
Duman, S., Gurbulak, B., Dogan, S., Bahtiyari Tekle, T., Phys. E 42, 1958 (2010)CrossRef
Abay, B., J. Alloys Compd. 506, 51 (2010)CrossRef
Duman, S., Gurbulak, B., Dogan, S., Turut, A., Vacuum 85, 798 (2011)CrossRef
Tolansky, S., Multiple Beam Interfermetry of Surface and Films (Oxford University Press, London, 1988), p. 147Google Scholar
Damodara Das, V., Karamakaran, D., Phys. Rev. B 39, 1082 (1989)
Husain, S.B., Zulfequar, M., Majeed Khan, M.A., Husain, M., Curr. App. Phys. 4, 445 (2004)CrossRef
Lakshminarayana, D., Desai, R.R, J. Mater. Sci., Mater. Electron. 4, 183 (1993)CrossRef
Shigetomi, S., Ikari, T., J. Appl. Phys. 88, 1520 (2000)CrossRef
Duman, S., Mater. Sci. Semicond. Process. 12, 243 (2009)CrossRef
Oueriagli, A., Kassi, H., Hotchandani, S., Leblanc, R.M., J. Appl. Phys. 71, 5523 (1992)CrossRef
Sze, M.S., Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
Rhoderick, E.H., Metal Semiconductor Contacts (Oxford University Press, Oxford, 1978)Google Scholar
Van, C.N., Kamloth, K.P., Thin Solid Films 392, 113, (2001)
El-Nahass, M.M., Abd-El-Rahman, K.F., Farag, A.A., Darwish, A.A.A., Org. Electr. 6, 129 (2005)CrossRef
El-Nahass, M.M., Zeyada, H.M., Aziz, M.S., El-Ghamaz, N.A., Solid-State Electron. 49, 1314 (2005)CrossRef
Forrest, S.R., Kaplan, M.L., Schmidt, P.H., J. Appl. Phys. 56, 543 (1984)CrossRef
Rhoderick, E.H., Williams, R.H., Metal Semiconductor Contacts (Oxford, Clarendon, 1988)Google Scholar
Huang, W.-C., Su, S.-H., Hsu, Y.-K., Wang, C.-C., Chang, C.-S., Superlattices Microstruct. 40, 644 (2006)CrossRef
Forrest, S.R., So, F.F., J. Appl. Phys. 64, 399 (1988)CrossRef
Ahmed, A., Collins, R.A., Phys. Status Solidi A 126, 411 (1991)CrossRef
Simmons, J.G., J. Phys. D 4, 613 (1971)CrossRef