Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T09:56:55.693Z Has data issue: false hasContentIssue false

Phase analysis of nanocomposite magnetic materials by electron energy loss spectrometry

Published online by Cambridge University Press:  15 February 2000

C. Hébert-Souche
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, 1040 Wien, Austria
J. Bernardi
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, 1040 Wien, Austria
P. Schattschneider
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, 1040 Wien, Austria
J. Fidler
Affiliation:
Institut für Angewandte und Technische Physik, Technische Universität Wien, 1040 Wien, Austria
B. Jouffrey
Affiliation:
LMSS-Mat, CNRS-URA 850, École Centrale Paris, grande voie des Vignes, 92295 Châtenay-Malabry, France
Get access

Abstract

EELS (electron energy loss spectrometry) in the transmission electron microscope (TEM) was used to determine the composition of a nanocrystalline magnetic specimen. The relative amounts of the hard magnetic phase Nd2Fe14B and the soft magnetic phase Fe3B at the point of measurement was measured by standard EELS quantification. In order to determine the structure of Fe3B present, the fine structure of the boron K-ionisation edge was analysed. Comparison of the experimental spectra with simulations of the fine structures based on the TELNES extension of the WIEN97 program package, a full potential linearised augmented plane wave approach to the calculation of electronic structure in crystals, shows that the tetragonal form of Fe3B is predominant.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coehoorn, R., DeMooij, D.B., DeWaard, C., J. Magn. Magn. Mater. 80, 101 (1989). CrossRef
Manaf, A., Buckley, R.A., Davies, H.A., J. Magn. Magn. Mater. 128, 302 (1993). CrossRef
Hadjipanayis, G.C., Withanawasam, L., Krause, R.F., IEEE Trans. Magn. 31, 3596 (1995). CrossRef
Kneller, E.F., IEEE Trans. Magn. 27, 3588 (1991). CrossRef
Schrefl, T., Fidler, J., Kronmüller, H., Phys. Rev. B 49, 6100 (1994). CrossRef
Coene, W., Hakkens, F., Coehoorn, R., Mooij, D.D., de Waard, C., Fidler, J., Groessinger, R., J. Magn. Magn. Mater. 96, 189 (1991). CrossRef
Stadelmann, P., Ultramicroscopy 21, 131 (1987). CrossRef
Rez, P., Bruley, J., Brohan, P., Payne, M., Garvie, L.A.J., Ultramicroscopy 59, 159 (1995). CrossRef
P. Blaha, K. Schwarz, J. Luitz, WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 1999).
C. Hébert-Souche, P.-H. Louf, P. Blaha, M. Nelhiebel, J. Luitz, P. Schattschneider, K. Schwarz, B. Jouffrey, Ultramicroscopy (in press).
Muller, D.A., Singh, D.J., Silcox, J., Phys. Rev. B 57, 8181 (1998). CrossRef