Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-6rwzl Total loading time: 0.19 Render date: 2021-05-10T20:13:21.868Z Has data issue: true Feature Flags: {}

Nickel concentration dependent structural and optical properties of electrodeposited diamond like carbon thin films

Published online by Cambridge University Press:  24 April 2014

Beauty Pandey
Affiliation:
Department of Applied Physics, Indian School of Mines, Dhanbad 826004, India
Jonaki Mukherjee
Affiliation:
Department of Applied Physics, Indian School of Mines, Dhanbad 826004, India
Bidyut Das
Affiliation:
Department of Applied Physics, Indian School of Mines, Dhanbad 826004, India
Asit K. Kar
Affiliation:
Department of Applied Physics, Indian School of Mines, Dhanbad 826004, India
Corresponding
E-mail address:
Get access

Abstract

Diamond like carbon (DLC) and composite nickel incorporated diamond-like carbon (Ni-DLC) films have been synthesized on ITO coated glass substrates using low voltage electrodeposition method. Modifications of structural and optical properties of thin films have been investigated with varying Ni concentration. Average grain size of Ni-DLC granules is found to decrease with increasing molarity of Ni in electrolytic solution. XRD pattern depicts multi-phase nature of Ni-DLC film. Incorporation of Ni nanoparticles in DLC matrix has been confirmed by TEM. Interestingly optical bandgap energy decreases from 2.31 to 1.58 eV with decrease in nickel content in the electrolytic bath. Simultaneously Urbach energy exhibits an increasing trend from 1.972 to 2.374 eV. Presence of sp2 and sp3 bonded carbons has been indicated by FTIR spectra. The number of sp2 bonding in carbon matrix is enhanced with dilution of electrolyte. The peaks in the range of ~600–750 cm−1 in Ni-DLC films have been attributed to metal incorporation into DLC matrix. Study reveals that the bandgap and the particle size of carbon nanocomposite films can be tailored by controlling the amount of nickel in the electrolyte.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below.

References

Robertson, J., Mater. Sci. Eng. R 37, 129 (2002)CrossRef
Kayani, A.N., Ph.D. thesis, Ohio University, 2003
Angus, J.C., Koidl, P., Domitz, S., in Plasma Deposited Thin Films , edited by Mort, J., Jansen, F. (CRC Press Boca Raton, Florida, 1986)Google Scholar
Voevodin, A.A., Zabinski, J.S., Thin Solid Films 268, 223 (2000)CrossRef
Voevodin, A.A., Walck, S.D., Zabinski, J.S., Wear 203–204, 516 (1997)CrossRef
Yokota, K., Nakatani, T., Miyashita, F., Eur. Phys. J. Appl. Phys. 39, 17 (2007)CrossRef
Paul, R., Dalui, S., Das, S.N., Bhar, R., Pal, A.K., Appl. Surf. Sci. 255, 1705 (2008)CrossRef
Vandevelde, T.C.S., Vandierendonck, K., Van Stappen, M., Du Mong, W., Perremans, P., Surf. Coat. Technol. 113, 80 (1999)CrossRef
Chu, P.K., Li, L., Mater. Chem. Phys. 96, 253 (2006)CrossRef
Gupta, S., Chowdhury, M.P., Pal, A.K., Appl. Surf. Sci. 236, 426 (2004)CrossRef
Robertson, J., Surf. Coat. Technol. 50, 185 (1992)CrossRef
Suzuki, T., Manita, Y., Yamazaki, T., Wada, S., Noma, T., J. Mater. Sci. 30, 2067 (1995)CrossRef
Wang, H., Shen, M., Ning, Z., Ye, C., Cao, C., Dang, H., Zhu, H., Appl. Phys. Lett. 69, 1074 (1996)CrossRef
Roy, R., Deb, B., Bhattacharjee, B., Pal, A.K., Thin Solid Films 422, 92 (2002)CrossRef
Schwartz, M., in Handbook of Deposition Technologies for Films and Coatings – Science, Technology and Applications , edited by Bunshah, R.F. 2nd edn (William Andrew Publishing, New Jersey, 1994), pp. 506616Google Scholar
Namba, Y., J. Vac. Sci. Technol. A 10, 3368 (1992)CrossRef
Cao, C., Zhu, H., Wang, H., Thin Solid Films 368, 203 (2000)CrossRef
Meng, W.J., Gillispie, B.A., J. Appl. Phys. 84, 4314 (1998)CrossRef
Hauert, R., Glisenti, A., Metin, S., Goitia, J., Kaufman, J.H., Thin Solid Films 268, 22 (1995)CrossRef
Paul, R., Gayen, R.N., Hussain, S., Khanna, V., Bhar, R., Pal, A.K., Eur. Phys. J. Appl. Phys. 47, 10502 (2009)CrossRef
Krishna, K.M., Soga, T., Mukhopadhyay, K., Sharon, M., Umeno, M., Sol. Energy Mater. Sol. Cells 48, 25 (1997)CrossRef
Lazar, G., Lazar, I., J. Non-Cryst. Solids 331, 70 (2003)CrossRef
Adhikary, S., Tian, X.M., Adhikari, S., Omer, A.M.M., Uchida, H., Umeno, M., Diamond Rel. Mater. 14, 1832 (2005)CrossRef
Dimigen, H., Hubsch, H., Memming, R., Appl. Phys. Lett. 50, 1056 (1987)CrossRef
Grill, A., Patel, V., Cohen, S.A., Diamond Rel. Mater. 3, 281 (1994)CrossRef
Lau, S.P., Li, Y.J., Tay, B.K., Sun, Z., Chen, G.Y., Ding, X.Z., Diamond Rel. Mater. 10, 1727 (2001)CrossRef
Hussain, S., Pal, A.K., Appl. Surf. Sci. 253, 3649 (2007)CrossRef
Hussain, S., Roy, R.K., Pal, A.K., J. Phys. D: Appl. Phys. 38, 900 (2005)CrossRef
Chen, J.S., Lau, S.P., Chen, G.Y., Sun, Z., Li, Y.J., Tay, B.K., Chai, J.W., Diamond Rel. Mater. 10, 2018 (2001)CrossRef
Pasaja, N., Sansongsiri, S., Intarasiri, S., Vilaithong, T., Anders, A., Nucl. Instr. Methods Phys. Res. B 259, 867 (2007)CrossRef
Koh, A.T.T., Hsieh, J., Chua, D.H.C., Diamond Rel. Mater. 19, 637 (2010)CrossRef
Ma, K., Yang, G., Yu, L., Zhang, P., Surf. Coat. Technol. 204, 2546 (2010)CrossRef
Khun, N.W., Liu, E., Yang, G.C., Surf. Coat. Technol. 204, 3125 (2010)CrossRef
Wan, S., Yu, Y., Zhang, J., Wang, L., Appl. Surf. Sci. 256, 4873 (2010)CrossRef
Pandey, B., Hussain, S., J. Phys. Chem. Solids 72, 1111 (2011)CrossRef
Pandey, B., Pal, P.P., Bera, S., Ray, S.K., Kar, A.K., Appl. Surf. Sci. 261, 789 (2012)CrossRef
Pal, P.P., M.Phil Dissertation, I.S.M. Dhanbad, 2010
Schiffmann, K.I., Fryda, M., Goerigk, G., Lauer, R., Hinze, P., Bulack, A., Thin Solid Films 347, 60 (1999)CrossRef
Anton, R., Carbon 46, 656 (2008)CrossRef
Marsh, H., Warburton, A.P., J. Appl. Chem. 20, 133 (1970)CrossRef
Lamber, R., Jaeger, N., Ekloff, G.S., Surf. Sci. 197, 402 (1988)CrossRef
Takeno, T., Hoshi, Y., Miki, H., Takagi, T., Diamond Rel. Mater. 17, 1669 (2008)CrossRef
Tamor, M.A., Vassell, W.C., Karduner, K.R., Appl. Phys. Lett. 58, 592 (1991)CrossRef
Thorpe, M.F., J. Non-Cryst. Solids 57, 355 (1983)CrossRef
Robertson, J., O’Reilly, E.P., Phys. Rev. B 35, 2946 (1987)CrossRef
Robertson, J., Diamond Rel. Mater. 2, 984 (1993)CrossRef
Mukherjee, J., M.Sc Dissertation, I.S.M. Dhanbad, 2010
Manifacier, J.C., Murcia, M., Fillard, J.P., Vicario, E., Thin Solid Films 41, 127 (1977)CrossRef
Savvides, N., J. Appl. Phys. 59, 4133 (1986)CrossRef
Bhattacharyya, D., Chaudhuri, S., Pal, A.K., Vacuum 43, 313 (1992)CrossRef
Fourches, N., Turban, G., Thin Solid Films 240, 28 (1994)CrossRef
Kreibig, U., Genzel, L., Surf. Sci. 156, 687 (1985)CrossRef
Hilger, A., Cuppers, N., Tenfelde, N., Kreibig, U., Eur. Phys. J. D 10, 115 (2000)CrossRef
Pinchuk, A., Kreibig, U., New J. Phys. 5, 151 (2003)CrossRef
Jungnickel, G., Frauenheim, T., Proezag, D., Blaudeck, P., Stephen, U., Phys. Rev. B 50, 6709 (1994)CrossRef
Chen, C.W., Robertson, J., J. Non-Cryst. Solids 227/228, 602 (1998)CrossRef
McCulloch, D.G., McKenzie, D.R., Goringe, C.M., Phys. Rev. B 61, 2349 (2000)CrossRef
Shin, J.H., van den Hoven, G.N., Polman, A., Appl. Phys. Lett. 66, 2379 (1995)CrossRef
Lee, S., Kim, D.S., Rhee, S.G., Oh, S.G., Lee, K.R., Thin Solid Films 341, 68 (1999)CrossRef
Kumar, S., Dixit, P.N., Panwar, O.S., Bhattacharyya, R., Diamond Rel. Mater. 12, 1576 (2003)CrossRef
Cody, G.D., J. Non-Cryst. Solids 141, 3 (1992)CrossRef
O’Leary, S.K., Appl. Phys. Lett. 72, 1332 (1998)CrossRef
Shi, X., Leah, L.K., Tay, B.K., Thin Solid Films 312, 166 (1998)
Hayashi, Y., Yu, G., Rahman, M.M., Krishna, K.M., Soga, T., Jimbo, T., Umeno, M., J. Appl. Phys. 89, 7924 (2001)CrossRef
Deraman, K., Sarmid, S., Ismail, B., Ahmad, N.E., Hussin, R., Nurulhuda, W., Shamsuri, W., Nor, M., Yusof, M., Hamzah, K., J. Fundam. Sci. 7, 1 (2011)
Ristein, J., Stief, R.T., Ley, L., Beyer, W., J. Appl. Phys. 84, 3836 (1998)CrossRef
Das, B., M.Sc Dissertation, I.S.M. Dhanbad, 2010
McNamara, K.M., Williams, B.E., Glenson, K.K., Sproggs, B.E., J. Appl. Phys. 76, 2466 (1994)CrossRef
Chou, L.H., Wang, H.W., J. Appl. Phys. 74, 4673 (1993)CrossRef
Dyer, J.R., Applications of Absorption Spectroscopy of Organic Compounds (Prentice-Hall of India, New Delhi, 2002)Google Scholar
Sharma, Y.R., Elementary Organic Spectroscopy (S. Chand & Co, New Delhi, 2003)Google Scholar
Dischler, B., Bubenzer, A., Koidl, P., Appl. Phys. Lett. 42, 636 (1983)CrossRef
Gang, W., Yuedong, M., Shaofeng, Z., Feng, L., Zhongqing, J., Plasma Sci. Technol. 10, 78 (2008)CrossRef
Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T. Jr., Liu, J., Smalley, R.E., J. Am. Chem. Soc. 122, 2383 (2000)CrossRef
Omer, A.M.M., Adhikari, S., Adhikary, S., Rusop, M., Uchida, H., Soga, T., Umeno, M., Diamond Rel. Mater. 15, 645 (2006)CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nickel concentration dependent structural and optical properties of electrodeposited diamond like carbon thin films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nickel concentration dependent structural and optical properties of electrodeposited diamond like carbon thin films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nickel concentration dependent structural and optical properties of electrodeposited diamond like carbon thin films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *