Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-8zwnf Total loading time: 0.253 Render date: 2022-12-05T02:42:29.340Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Magnetotransport in a two-subband AlGaN/GaN heterostructure in the presence of mixed disorder

Published online by Cambridge University Press:  23 October 2014

Wilfried Desrat*
Affiliation:
Université Montpellier 2 and CNRS, Laboratoire Charles Coulomb UMR 5221, 34095 Montpellier, France
Magdalena Chmielowska
Affiliation:
CRHEA-CNRS UPR 10, rue B. Grégory, Parc de Sophia Antipolis, 06560 Valbonne, France
Sébastien Chenot
Affiliation:
CRHEA-CNRS UPR 10, rue B. Grégory, Parc de Sophia Antipolis, 06560 Valbonne, France
Yvon Cordier
Affiliation:
CRHEA-CNRS UPR 10, rue B. Grégory, Parc de Sophia Antipolis, 06560 Valbonne, France
Benoît Jouault
Affiliation:
Université Montpellier 2 and CNRS, Laboratoire Charles Coulomb UMR 5221, 34095 Montpellier, France
Get access

Abstract

We present magnetotransport measurements on a high electron density AlGaN/GaN heterostructure with two subbands populated at T = 1.6 K. The transport scattering times, τtr, of each subband are first derived at low magnetic field by taking into account the magneto-intersubband scattering term. Then the quantum scattering times, τq, are extracted from independent Dingle plots, obtained at higher magnetic fields. All scattering times are studied as a function of the total electronic density, increased by the persistent photo-conductivity effect. A standard modelization, based on all common scattering mechanisms, reveals that the transport scattering time is governed by the short-range AlGaN/GaN interface roughness (IR) scattering, whereas the quantum scattering time is due to the smooth potential induced by remote ionized impurities (II) at the GaN surface. This intermediate situation of mixed disorder, where the τtr/τq ratio is greater than one, does not indicate that the mobility is limited by Coulomb scattering. It is due to the unusual condition, τtrIIτtrIRτqII$ {\tau }_{\mathrm{t}r}^{\mathrm{II}}\gg {\tau }_{\mathrm{t}r}^{\mathrm{IR}}\gg {\tau }_{\mathrm{q}}^{\mathrm{II}}$.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shur, M., Davis, R., GaN-Based Materials and Devices (World Scientific Publishing Co., Singapore, 2004)CrossRefGoogle Scholar
Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.M., IEEE Trans. Microwave Theor. Tech. 60, 1764 (2012)CrossRef
Ridley, B.K., Quantum Processes in Semiconductors, 4th edn. (Oxford University Press, 1999)Google Scholar
Ando, T., Fowler, A.B., Stern, F., Rev. Mod. Phys. 54, 437 (1982)CrossRef
Harrang, J.P., Higgins, R.J., Goodall, R.K., Jay, P.R., Laviron, M., Delescluse, P., Phys. Rev. B 32, 8126 (1985)CrossRef
Hsu, L., Walukiewicz, W., Appl. Phys. Lett. 80, 2508 (2002)CrossRef
das Sarma, S., Hwang, E.H., arXiv:1401.0183
Gornyi, I.V., Mirlin, A.D., Phys. Rev. B 69, 045313 (2004)CrossRef
Pèrez-Tomás, A., Fontserè, A., Llobet, J., Placidi, M., Rennesson, S., Baron, N., Chenot, S., Moreno, J.C., Cordier, Y., J. Appl. Phys. 113, 174501 (2013)CrossRef
van der Pauw, J.L., Philips Res. Rep. 13, 1 (1958)
Tang, N., et al., Phys. Rev. B 76, 155303 (2007)CrossRef
Lo, I., et al., Phys. Rev. B 74, 245325 (2006)CrossRef
Knap, W., Frayssinet, E., Sadowski, M., Skierbiszewski, C., Maude, D., Falko, V., Khan, M.A., Shur, M., Appl. Phys. Lett. 75, 3156 (1999)CrossRef
Nicholas, R.J., Haug, R.J., Klitzing, K.V., Weimann, G., Phys. Rev. B 37, 1294 (1988)CrossRef
Dziuba, Z., Phys. Status Solidi A 153, 445 (1996)CrossRef
Lisesivdin, S.B., Tasli, P., Kasap, M., Ozturk, M., Arslan, E., Ozcelik, S., Ozbay, E., Thin Solid Films 518, 5572 (2010)CrossRef
Smith, T.P. III, Fang, F.F., Phys. Rev. B 37, 4303 (1988)CrossRef
Studenikin, S.A., Chaplik, A.V., Panaev, I.A., Salis, G., Ensslin, K., Maranowski, K., Gossard, A.C., Semicond. Sci. Technol. 14, 604 (1999)CrossRef
Fletcher, R., Tsaousidou, M., Smith, T., Coleridge, P.T., Wasilewski, Z.R., Feng, Y., Phys. Rev. B 71, 155310 (2005)CrossRef
Zaremba, E., Phys. Rev. B 45, 14143 (1992)CrossRef
Lo, I., et al., Phys. Rev. B 65, 161306 (2002)CrossRef
Asgari, A., Babanejad, S., Faraone, L., J. Appl. Phys. 110, 113713 (2011)CrossRef
Antoszewski, J., Gracey, M., Dell, J.M., Faraone, L., Fisher, T.A., Parish, G., Wu, Y.F., Mishra, U.K., J. Appl. Phys. 87, 3900 (2000)CrossRef
Jena, D., Smorchkova, Y., Elsass, C., Gossard, A.C., Mishra, U.K., arXiv:cond-mat/0103461
Farvacque, J.L., Bougrioua, Z., Phys. Rev. B 68, 035335 (2003)CrossRef
Hai, G.Q., Studart, N., Peeters, F.M., Phys. Rev. B 52, 8363 (1995)CrossRef
Cheng, H., Kurdak, Ç., Leach, J.H., Wu, M., Morkoç, H., Appl. Phys. Lett. 97, 112113 (2010)CrossRef
Miao, Z.L., J. Appl. Phys. 109, 016102 (2011)CrossRef
Lorenzini, P., Bougrioua, Z., Tiberj, A., Tauk, R., Azize, M., Sakowicz, M., Karpierz, K., Knap, W., Appl. Phys. Lett. 87, 232107 (2005)CrossRef
Quang, D.N., Tung, N.H., Tuoc, V.N., Minh, N.V., Huy, H.A., Hien, D.T., Phys. Rev. B 74, 205312 (2006)CrossRef
Manfra, M.J., Simon, S.H., Baldwin, K.W., Sergent, A.M., West, K.W., Molnar, R.J., Caissie, J., Appl. Phys. Lett. 85, 5278 (2004)CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetotransport in a two-subband AlGaN/GaN heterostructure in the presence of mixed disorder
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Magnetotransport in a two-subband AlGaN/GaN heterostructure in the presence of mixed disorder
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Magnetotransport in a two-subband AlGaN/GaN heterostructure in the presence of mixed disorder
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *