Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.214 Render date: 2021-12-04T14:55:58.794Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Low-temperature deposition of weakly-stressed nanocrystalline silicon films by reactive magnetron sputtering

Published online by Cambridge University Press:  21 December 2004

A. Ben Othman
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia
Y. Leconte
Affiliation:
SIFCOM-ISMRA, UMR 6176, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
P. Marie
Affiliation:
SIFCOM-ISMRA, UMR 6176, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
K. Zellama*
Affiliation:
Laboratoire de Physique de la Matière Condensée, 33 rue Saint-Leu, 80039 Amiens, France
C. Goncalves
Affiliation:
Laboratoire de Physique de la Matière Condensée, 33 rue Saint-Leu, 80039 Amiens, France
X. Portier
Affiliation:
Hitachi Global Storage Technologies, 5600 Cottle Road, San Jose 95193, California, USA
M. Daouahi
Affiliation:
Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia
H. Bouchriha
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia
R. Rizk
Affiliation:
SIFCOM-ISMRA, UMR 6176, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
Get access

Abstract

We discuss the fabrication and characterization of undoped hydrogenated and crystallized silicon thin films grown by reactive magnetron sputtering at growth rate of about 2 Å/s and at a temperature as low as 100 °C for various ratios of hydrogen dilution in the gas phase mixture (argon + x% hydrogen). Combined infrared absorption and Raman scattering spectroscopy techniques as well as conventional and high resolution transmission electron microscopy and stress measurements are used to fully characterize the films. In this temperature range, a minimum hydrogen dilution of 30% with respect to the plasma mixture (argon + hydrogen) is necessary to produce nanocrystalline films with crystalline volume fraction of about 65%. Moreover, these films are found to promote much lower stress intensity than those reported in previous works. The nature and strength of the stresses are dependent on the film microstructure.


Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Meier, J. et al., Mater. Res. Soc. Symp. Proc. 420, 3 (1996) CrossRef
Feitknecht, K.L. et al., Sol. Energy Mater. Solar Cells 66, 397 (2001) CrossRef
Meier, J., Fluckiger, R., Keppner, H., Shah, A., Appl. Phys. Lett. 65, 860 (1994) CrossRef
Müller, J., Finger, F., Cariuus, R., Wagner, H., Phys. Rev. B 60, 11666 (1999) CrossRef
Kroll, U., Meier, J., Shah, A., Mikhailov, S., Weber, J., J. Appl. Phys. 80, 4971 (1996) CrossRef
Kondo, M., Nasumo, Y., Mase, H., Wada, T., Matsuda, A., J. Non-Cryst. Solids 299-302, 108 (2002) CrossRef
Hamma, S., Roca, P. i Cabarrocas, J. Non-Cryst. Solids 227-230, 852 (1998) CrossRef
Hapke, P., Finger, F., J. Non-Cryst. Solids 227-230, 861 (1998) CrossRef
Brüggemann, R., Kleider, J.P., Longeaud, C., Mencaraglia, D., Guillet, J., Bourré, J.E., Nükura, C., J. Non-Cryst. Solids 266-269, 258 (2000) CrossRef
Daxing Han, H. Habuchi, T. Hori, A. Nishibe, T. Namroka, Jing Lin, Guozhen Yue, J. Non-Cryst. Solids 266-269, 274 (2000)
Martins, R., Ferreira, I., Fernandes, F., Fortunato, E., J. Non-Cryst. Solids 227-230, 901 (1998) CrossRef
Gerbi, J.E., Abelson, J.R., J. Appl. Phys. 89, 1463 (2001) CrossRef
Achiq, A., Rizk, R., Gourbilleau, F., Voivenel, P., Thin Solid Films 348, 74 (1999) CrossRef
Goncalves, C., Charvet, S., Zeinert, A., Clin, M., Zellama, K., Thin Solid Films 403-404, 91 (2002) CrossRef
Leconte, Y. Dufour, C., Garrido, R., Rizk, R., J. Non-Cryst. Solids 299-302, 87 (2002) CrossRef
Beckers, I., Nickel, N.H., Pilz, W., Fuhs, W., J. Non-Cryst. Solids 227-230, 847 (1998) CrossRef
Zhou, J.H., Ikuta, K., Yasuda, T., Umeda, T., Yamasaki, S., Tanaka, K., J. Non-Cryst. Solids 227-230, 857 (1998) CrossRef
Goerlitzer, M., Torres, P., Beck, N., Wyrsch, N., Keppner, H., Pohl, J., J. Non-Cryst. Solids 227-230, 996 (1998) CrossRef
Kasouit, S., Kumar, S., Vandherhagen, R., Roca, P. i Cabarrocas, I. French, J. Non-Cryst. Solids 299-302, 113 (2002) CrossRef
Mates, T. et al., J. Non-Cryst. Solids 299-302, 767 (2002) CrossRef
Matsuda, A., Thin Solid Films 337, 1 (1999) CrossRef
Tanaka, K., Mater. Res. Soc. Symp. Proc. 452, 3 (1997) CrossRef
Paillard, V., Puech, P., Roca, P. i Cabarrocas, J. Non-Cryst. Solids 299-302, 280 (2002) CrossRef
Vepreck, S., Sarrot, F.A., Iqbal, Z., Phys. Rev. B 36, 3344 (1987) CrossRef
Stoney, G.G., Proc. R. Soc. London A 82, 172 (1909) CrossRef
Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., Maley, N., Phys. Rev. B 45, 13367 (1992) CrossRef
Lusson, L., Lusson, A., Elkaim, P., Dixmier, J., Ballutaud, D., J. Appl. Phys. 81, 3073 (1997) CrossRef
Byum, J.S. et al., Mater. Res. Soc. Symp. Proc. 337, 75 (1995)
Vignoli, S., Fontcuberta, A. i Morral, R. Butté, R. Meaudre, M. Meaudre, J. Non-Cryst. Solids 299-302, 220 (2002) CrossRef
Itoh, T., Yamamokoto, K., Ushukashi, K., Nonomura, S., Nitta, S., J. Non-Cryst. Solids 266-269, 201 (2000) CrossRef
Touir, H., Dixmier, J., Zellama, K., Morhange, J.F., Bounouh, Y., Elkaim, P., J. Non-Cryst. Solids 227-230, 906 (1998) CrossRef
Roca, P. i Cabarrocas, S. Hamma, S.N. Sharma, G. Viera, E. Bertran, J. Costa, J. Non-Cryst. Solids 227-230, 871 (1998) CrossRef
Lengsfeld, P., Nickel, N.H., J. Non-Cryst. Solids 299-302, 778 (2002) CrossRef
Higashi, S., Ando, N., Kamisoko, K., Sameshima, T., Jpn J. Appl. Phys. 40, 731 (2001) CrossRef
Lin, F. et al., J. Non-Cryst. Solids 299-302, 385 (2002)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low-temperature deposition of weakly-stressed nanocrystalline silicon films by reactive magnetron sputtering
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Low-temperature deposition of weakly-stressed nanocrystalline silicon films by reactive magnetron sputtering
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Low-temperature deposition of weakly-stressed nanocrystalline silicon films by reactive magnetron sputtering
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *