Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T19:17:02.741Z Has data issue: false hasContentIssue false

InGaP/GaAs camel-like gate field-effect transistor with InGaAs pseudomorphic doped-channel layer

Published online by Cambridge University Press:  02 October 2009

J.-H. Tsai*
Affiliation:
Department of Electronic Engineering, National Kaohsiung Normal University, 116 Ho-ping 1st Road, Kaohsiung 802, Taiwan
Y.-H. Lee
Affiliation:
Department of Electronic Engineering, National Kaohsiung Normal University, 116 Ho-ping 1st Road, Kaohsiung 802, Taiwan
N.-F. Dale
Affiliation:
Department of Electronic Engineering, National Kaohsiung Normal University, 116 Ho-ping 1st Road, Kaohsiung 802, Taiwan
W.-S. Lour
Affiliation:
Department of Electrical Engineering, National Taiwan Ocean University, 2 Peining Road, Keelung, Taiwan
Get access

Abstract

In this paper, we first fabricate and demonstrate the InGaP/GaAs camel-like gate field-effect transistor with InGaAs pseudomorphic heavy-doped channel. Due to the large gate potential barrier for the use of the n+-GaAs/p+-InGaP/n-GaAs camel-like gate and the thin as well as heavy doping n+-InGaAs channel layer, the effective conduction band discontinuity $(\Delta E_c)$ is substantially extended and a high gate turn-on voltage up to 2.0 V is obtained. The device exhibits a relatively broad gate voltage swing resulting from the high gate turn-on voltage. In addition, a maximum drain current of 393 mA/mm and a maximum transconductance of 96 mS/mm are measured. These results indicate that the studied device is suitable for signal amplifier and linear circuit applications.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Takenaka, I., Ishikura, K., Takahashi, H., Asano, K., Morikawa, J., Satou, K., Kishi, K., Hasegawa, K., Tokunaga, K., Emori, F., Kuzuhara, M., IEEE J. Solid-State Circuits 34, 1181 (1999) CrossRef
König, U., Zeuner, M., Höck, G., Hackbarth, T., Glück, M., Ostermann, T., Saxarra, M., Solid-State Electron. 43, 1383 (1999) CrossRef
Pospieszalski, M.W., IEEE Microwave Magazine 6, 62 (2005) CrossRef
Lafontaine, H., Haghiri-Gosnet, A.M., Jin, Y., Crozat, P., Adde, R., Chaker, M., Pepin, H., Rousseaux, F., Launois, H., IEEE Trans. Electron Devices 43, 175 (1996) CrossRef
Yu, S.J., Hsu, W.C., Chen, Y.J., Wu, C.L., Solid-State Electron. 50, 291 (2006) CrossRef
Lin, Y.S., Sun, T.P., Lu, S.S., IEEE Electron Device Lett. 18, 150 (1997) CrossRef
Liu, W.C., Yu, K.H., Liu, R.C., Lin, K.W., Lin, K.P., Yen, C.H., Cheng, C.C., Thei, K.B., IEEE Trans. Electron Devices 48, 2677 (2001)
Tsai, J.H., Weng, T.Y., Li, C.M., Semicond. Sci. Technol. 23, 075018 (2008) CrossRef
Morkoç, H., Electron. Lett. 18, 258 (1982) CrossRef
Thorne, R.E., Su, S.L., Fischer, R.J., Kopp, W.F., Lyons, W.G., Miller, P.A., Morkoc, H., IEEE Trans. Electron Devices 30, 212 (1983) CrossRef
Lour, W.S., Chang, W.L., Young, S.T., Liu, W.C., Electron. Lett. 34, 814 (1998) CrossRef
Park, J., Jo, S.J., Hong, S., Song, J.I., Solid-State Electron. 46, 651 (2002) CrossRef
Van Tuyen, V., Hu, Z., Rezazadeh, A.A., Wu, Y., Electron. Lett. 38, 1228 (2002) CrossRef
S.M. Sze, High-Speed Semiconductor Devices (John Wiley & Sons, Inc., New York, 1990)
Kao, M.J., Hsu, W.C., Shieh, H.M., Jpn J. Appl. Phys. 32, L1503 (1993) CrossRef
Kao, M.J., Shieh, H.M., Hsu, W.C., Lin, T.Y., Wu, Y.H., Hsu, R.T., IEEE Trans. Electron Devices 43, 1181 (1996)