Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-24T13:32:37.239Z Has data issue: false hasContentIssue false

Density functional theory study of the structural and electronic properties of Mg3Bi2 in hexagonal and cubic phases

Published online by Cambridge University Press:  25 January 2013

Matin Sedighi
Affiliation:
Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Borhan Arghavani Nia*
Affiliation:
Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Hanif Zarringhalam
Affiliation:
Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Rostam Moradian
Affiliation:
Nano-Science and Nano-Technology Research Center, Razi University, Kermanshah, Iran Computational Physics Science Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-1795, Tehran, Iran
Get access

Abstract

We study the structural and electronic properties of Mg3Bi2 in both hexagonal and body center cubic (bcc) phases by using first-principles calculations based on the density functional theory (DFT). We solve the Kohn-Sham equations using the full potential linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximations as proposed by Perdew-Burke-Ernzerhof (PBE sol GGA) and Engel-Vosko (EV-GGA) are employed to calculate the exchange correlation potential. Using GGA, we compute the optimized lattice parameters of the bcc. This is the first instance of such application of GGA. In close agreement with experimental results, our electronic calculations show that the hexagonal phase is a direct gap semiconductor with energy gap of 0.2520 eV. The bcc phase calculated band structure shows a direct gap semiconductor with band gap of 1.0306 eV. We further study the effects of applying pressure on the band structure of the system.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kajikawa, T., Kimura, N., Yokoyama, T., 22nd International Conference on Thermo Electrics, 2003
Honda, H., Sakaguchi, H., Tanaka, I., Esaka, T., J. Power Sources 123, 216 (2003)CrossRef
Singh, P., Sarkar, K.K., Solid State Commun. 55, 439 (1985)CrossRef
Bames, A.C., Guo, C., Howells, W.S., J. Phys.: Condens. Matter 6, L467 (1994)
Samsonov, G.V., Abdusalyamova, M.N., Chernogorenko, V.B., Vismutidy (Bismuthides) (Naukova Dumka, Kiev, 1977)Google Scholar
Sevast’yanova, L.G., Kravchenko, O.V., Gulish, O.K., Stupnikov, V.A., Leonova, M.E., Zhizhin, M.G., Neorganicheskie Materialy (Inorganic Materials) 42, 863 (2006)
Watson, L.M., Marshall, C.A.W., Cardoso, C.P., J. Phys. F: Met. Phys. 14, 113 (1984)CrossRef
Zhou, D.W., Liu, J.S., Xu, S.H., Peng, P., Physica B 405, 2863 (2010)CrossRef
Imai, Y., Watanabe, A., J. Mater. Sci. 41, 2435 (2006)CrossRef
Brazhkin, V.V., Dmitriev, D.R., Voloshin, R.N., Phys. Lett. A 193, 102 (1994)CrossRef
Xu, R., de Groot, R.A., van der Lugt, W., J. Phys.: Condens. Matter 5, 7551 (1993)
de Wijs, G.A., Pastore, G., Selloni, A., van der Lugt, W., J. Phys.: Condens. Matter 8, 1879 (1996)
Sedighi, M., Arghavani Nia, B., Zarringhalam, H., Moradian, R., Physica B 406, 3149 (2011)CrossRef
Blaha, P., Schwarz, K., Madsen, G.K.H., Vasnicka, D.K., Luitz, J., WIEN2K, An Augmented Plane Wave + Local Orbitals Program for calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat Wien, Austria, ISBN 3-9501031-1-2, 2001)Google Scholar
Kohn, W., Sham, L.J., Phys. Rev. 140, A1133 (1965)CrossRef
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Engel, E., Vosko, S.H., Phys. Rev. 47, 13164 (1993)CrossRef
Monkhorst, H.J., Park, J.D., Phys. Rev. B 13, 5188 (1976)CrossRef
Wyckoff, R.W.G., Crystal Structures, 2nd edn. (Krieger, Malabar, FL, 1986)Google Scholar
Murnaghan, F.D., Proc. Natl. Acad. Sci. USA 30, 244 (1944)CrossRef
Pulay, P., Mol. Phys. 17, 197 (1969)CrossRef
Tyuterev, V.G., Vast, N., Comput. Mater. Sci. 38, 350 (2006)CrossRef