Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-29T00:27:24.301Z Has data issue: false hasContentIssue false

3D numerical modeling of a new thermo-inductive NDT using pulse mode and pulsed phase methods

Published online by Cambridge University Press:  21 October 2010

B. Ramdane*
Affiliation:
Institut de Recherche en Électrotechnique et Électronique de Nantes Atlantique (IREENA), 37 boulevard de l'Université, BP 406, 44600 Saint-Nazaire Cedex, France
D. Trichet
Affiliation:
Institut de Recherche en Électrotechnique et Électronique de Nantes Atlantique (IREENA), 37 boulevard de l'Université, BP 406, 44600 Saint-Nazaire Cedex, France
M. Belkadi
Affiliation:
Institut de Recherche en Électrotechnique et Électronique de Nantes Atlantique (IREENA), 37 boulevard de l'Université, BP 406, 44600 Saint-Nazaire Cedex, France
T. Saidi
Affiliation:
Institut de Recherche en Électrotechnique et Électronique de Nantes Atlantique (IREENA), 37 boulevard de l'Université, BP 406, 44600 Saint-Nazaire Cedex, France
J. Fouladgar
Affiliation:
Institut de Recherche en Électrotechnique et Électronique de Nantes Atlantique (IREENA), 37 boulevard de l'Université, BP 406, 44600 Saint-Nazaire Cedex, France
Get access

Abstract

Thermo-inductive testing is a new technique used for health inspection on different components of automotive and aeronautic industries. Defect detection is based on the modification of induced eddy current and temperatures due to the presence of defects. The temperature change propagated at the surface of the specimen can then be detected by an infrared camera. In this work, a 3D numerical model of this technique is developed and applied to aeronautic materials. Results obtained are compared with the infrared thermography method to demonstrate the relevance of the new technique.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Ramdane, D. Trichet, M. Belkadi, J. Fouladgar, T. Saidi, in Proc. 13th IEEE CEFC, Athens, Greece, 2008, p. 418
G. Walle, U. Netzelmann, in Proc. 9th Eur. Conf. Non-Destructive Testing (ECNDT 2006), Berlin, Germany, 2006, p. Tu.4.8.5
B. Oswald-Tranta, G. Wally, in Proc. 9th Eur. Conf. Non-Destructive Testing (ECNDT 2006), Berlin, Germany, 2006, p. We.3.8.3
Biro, O., Pries, K., IEEE Trans. Magn. 25, 3145 (1989) CrossRef
Bossavit, A., IEEE Trans. Magn. 24, 74 (1988) CrossRef
Henneron, T., Le Menach, Y., Piriou, F., Moreau, O., Clénet, S., Vérité, J.-P., IEEE Trans. Magn. 41, 1785 (2007) CrossRef
Ren, Z., IEEE Trans. Magn. 32, 6555 (1996)
C. Ibarra-Castanedo, Ph.D. thesis, University of Laval, Quebec, 2005
Sakagami, T., Kubo, S., Infrared Phys. Technol. 43, 211 (2002) CrossRef
J.P.A. Bastos, N. Sadowski, Electromagnetic modelling by finite element methods (Marcel Dekker, New York, 2003)
Maldague, X., Marinetti, S., J. Appl. Phys. 79, 2694 (1996) CrossRef