Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-fstz4 Total loading time: 0.214 Render date: 2021-05-08T17:39:32.846Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

SPET study of verbal fluency in schizophrenia and epilepsy

Published online by Cambridge University Press:  03 January 2018

John D. C. Mellers
Affiliation:
Department of Neuropsychiatry, Maudsley Hospital, London
Naoto Adachi
Affiliation:
Department of Psychological Medicine, King's College Hospital, London
Noriyoshi Takei
Affiliation:
Section of Genetics, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London
Alice Cluckie
Affiliation:
Department of Nuclear Medicine, King's College Hospital, London
Brian K. Toone
Affiliation:
Department of Psychological Medicine, King's College Hospital, London
W. Alwyn Lishman
Affiliation:
Section of Neuropsychiatry, Institute of Psychiatry, London

Abstract

Background

The association between temporal lobe epilepsy and schizophrenia suggests that the critical abnormality may be pathology within the temporal lobes. People with schizophrenia-like psychosis of epilepsy (SLPE) provide a useful group in which to examine the importance of temporal and frontal lobe dysfunction in schizophrenia.

Method

A verbal fluency activation paradigm and a 99mTc HMPAO SPET were used to study frontotemporal function in people with SLPE (n = 12), schizophrenia (n = 11) and epilepsy (n = 16).

Results

People with SLPE differed from both other groups by showing lower blood flow in the left superior temporal gyrus during performance of a verbal fluency task compared with a word repetition task (F=5.4, P=0.01). During the verbal fluency task people with primary schizophrenia showed a greater increase in blood flow in anterior cingulate (F=4.5, P=0.02) than the other two groups. There were no between-group differences in frontal brain regions.

Conclusion

Our findings support an association between left temporal lobe abnormality and SLPE. The different patterns of activation observed in people with primary schizophrenia and SLPE suggests that different pathophysiological mechanisms may operate in these two groups. In SLPE the pathophysiology may be relatively confined to the dominant temporal lobe.

Type
Papers
Copyright
Copyright © 1998 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below.

References

American Psychiatric Association (1987) Diagnostic and Statistical Manual of Mental Disorders (3rd edn, revised) (DSM—III—R). Washington, DC: APA.Google ScholarPubMed
Chua, S. E. & McKenna, P. J. (1995) Schizophrenia — a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. British Journal of Psychiatry, 166, 563582.CrossRefGoogle ScholarPubMed
Devous, M. D. Leroy, R. F. & Homan, R. W. (1990) Single photon emission computed tomography in epilepsy. Seminars in Nuclear Medicine, 20, 325341.CrossRefGoogle ScholarPubMed
Dolan, R. J. Fletcher, P. Frith, C. D. et al (1995) Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature, 378, 180182.CrossRefGoogle Scholar
Flor-Henry, P. (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia, 10, 363369.CrossRefGoogle ScholarPubMed
Frith, C. D. Friston, K. J. Herald, S. et al (1995) Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. British Journal of Psychiatry, 167, 343349.CrossRefGoogle ScholarPubMed
Gunn, J. & Fenton, G. W. (1969) Epilepsy in prisons: a diagnostic survey. British Medical Journal, iv, 326328.CrossRefGoogle Scholar
Kawasaki, Y. Maeda, Y. Suzuki, M. et al (1993) SPECT analysis of regional cerebral blood flow changes in patients with schizophrenia during the Wisconsin Card Sorting Test. Schizophrenia Research, 10, 109116.CrossRefGoogle ScholarPubMed
Kristensen, O. & Sindrup, E. H. (1978) Psychomotor epilepsy and psychosis. 11. Electroencephalographic findings. Acta Neurologica Scandinavica, 57, 370379.CrossRefGoogle Scholar
Marshall, E. J. Syed, G. M. S. Fenwick, P. B. C. et al (1993) A pilot study of schizophrenia-like psychosis in epilepsy using single photon emission computerised tomography. British Journal of Psychiatry, 163, 3236.CrossRefGoogle ScholarPubMed
Mendel, M. F. Grau, R. Doss, R. C. et al (1993) Schizophrenia in epilepsy: seizure and psychosis variables. Neurology, 43, 10731077.CrossRefGoogle Scholar
Nelson, H. E. (1982) The National Adult Reading Test Manual. Windsor: NFER-Nelson.Google Scholar
Overall, J. E. & Gorham, D. R. (1962) The Brief Psychiatric Rating Scale. Psychological Research, 10, 799812.Google Scholar
Ron, M. A. & Harvey, I. (1990) The brain in schizophrenia. Journal of Neurology, Neurosurgery and Psychiatry, 53, 725726.CrossRefGoogle Scholar
Schoneil, F. (1942) Backwardness in the Basic Subjects. London: Oliver and Boyd.Google Scholar
Shedlack, K. J. Hunter, R. Wyper, D. et al (1991) The pattern of cerebral activity underlying verbal fluency as shown by split-dose single photon emission tomography (SPETor SPECT) in normal volunteers. Psychological Medicine, 21, 687696.CrossRefGoogle Scholar
Talairach, J. & Tournoux, P. (1988) A Coplanar Stereotactic Atlas of Human Brain. Stuttgart: Thieme Verlag.Google Scholar
Toone, B. K. Dawson, J. & Driver, M. V. (1982) Psychoses of epilepsy: A radiological evaluation. British Journal of Psychiatry, 140, 244248.CrossRefGoogle ScholarPubMed
Warburton, E. Wise, R. J. S. Price, C. J. et al (1996) Noun and verb retrieval by normal subjects. Studies with PET. Brain, 119, 159179.CrossRefGoogle ScholarPubMed
Weinberger, D. R. Berman, K. F. Suddath, R. et al (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. American Journal of Psychiatry, 149, 890897.Google ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SPET study of verbal fluency in schizophrenia and epilepsy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

SPET study of verbal fluency in schizophrenia and epilepsy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

SPET study of verbal fluency in schizophrenia and epilepsy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *