Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T04:41:03.778Z Has data issue: false hasContentIssue false

Magnetic Resonance Imaging and Spectroscopy in Schizophrenia

Published online by Cambridge University Press:  06 August 2018

John L. Waddington*
Affiliation:
Royal College of Surgeons in Ireland, Dublin
Eadbhard O'Callaghan
Affiliation:
Cluain Mhuire Family Centre, Blackrock, Co. Dublin, Institute of Psychiatry, London
Conall Larkin
Affiliation:
Cluain Mhuire Family Centre, Blackrock, Co. Dublin
Oonagh Redmond
Affiliation:
Institute of Radiological Sciences, Mater Hospital, Dublin
John Stack
Affiliation:
Institute of Radiological Sciences, Mater Hospital, Dublin
Joseph T. Ennis
Affiliation:
Institute of Radiological Sciences, Mater Hospital, Dublin
*
Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland

Extract

In this new era of structural and functional neuroimaging technologies, it is the unsurpassed anatomical resolution of magnetic resonance imaging (MRI) (Andreasen, 1989; and Besson, this supplement) that has resulted in a new generation of studies on cerebral morphology in schizophrenia. With the recent development of whole-body magnets of very high (⩾ 1.5T) and uniform field strength, it has become possible to extend the scope of this approach to include measurement of certain fundamental neurochemical processes, via magnetic resonance spectroscopy (MRS: Hubesch et al, 1989; Lock et al, this supplement). The purpose of this article is to introduce and review critically the existing literature on the application of MRI and MRS to schizophrenia, and to give a preliminary account of some of our own recent studies in these areas.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (1980) Diagnostic and Statistical Manual of Mental Disorders (3rd edn) (DSM–III). Washington, DC: APA.Google Scholar
Andreasen, N. C. (1989) Nuclear magnetic resonance imaging. In Brain Imaging: Applications in Psychiatry (ed. Andreasen, N. C.). Washington, DC: APA.Google Scholar
Andreasen, N. C., Nasrallah, H. A., Dunn, V., et al (1986) Structural abnormalities in the frontal system in schizophrenia: a magnetic resonance imaging study. Archives of General Psychiatry, 43, 136144.Google Scholar
Andreasen, N. C., Ehrhardt, J., Yuh, W., et al (1989) Magnetic resonance imaging in schizophrenia: an update. In Schizophrenia: Scientific Progress (eds Schulz, S. C. & Tamminga, C. A.). New York: Oxford University Press.Google Scholar
Andreasen, N. C., Ehrhardt, J., Swayze, V. W., et al (1990) Magnetic resonance imaging of the brain in schizophrenia: the pathophysiological significance of structural abnormalities. Archives of General Psychiatry, 47, 3544.Google Scholar
Arndt, D. C., Ratner, A. V., Faull, K. F., et al (1988) 19F magnetic resonance imaging and spectroscopy of a fluorinated neuroleptic: in vivo and in vitro studies. Psychiatry Research, 25, 7379.Google Scholar
Bartels, M., Albert, K., Kruppa, G., et al (1986) Fluorinated psychopharmacological agents: non-invasive observation by fluorine-19 nuclear magnetic resonance. Psychiatry Research, 18, 197201.Google Scholar
Besson, J. A. O., Corrigan, F. M., Cherryman, G. R., et al (1987) Nuclear magnetic resonance brain imaging in chronic schizophrenia. British Journal of Psychiatry, 150, 161163.Google Scholar
Boesch, C., Gruetter, R., Martin, E., et al (1989) Variations in the in vivo P-31 MR spectra of the developing human brain during postnatal life. Radiology, 172, 197199.Google Scholar
Budinger, T. F. & Lauterbur, P. C. (1984) Nuclear magnetic resonance technology for medical studies. Science, 226, 288298.Google Scholar
Byne, W., Bleier, R. & Houston, L. (1988) Variations in human corpus callosum do not predict gender: a study using magnetic resonance imaging. Behavioural Neuroscience, 102, 222227.Google Scholar
Cannon, T. D., Mednick, S. A. & Parnas, J. (1989) Genetic and perinatal determinants of structural brain deficits in schizophrenia. Archives of General Psychiatry, 46, 883889.Google Scholar
Caviness, V. S., Filipek, P. A. & Kennedy, D. N. (1989) Magnetic resonance technology in human brain science: blueprint for a program based upon morphometry. Brain Development, 11, 113.Google Scholar
Coffman, J. A., Schwarzkopf, S. B., Olson, S. C., et al (1989) Midsagittal cerebral anatomy by magnetic resonance imaging: the importance of slice position and thickness. Schizophrenia Research, 2, 287294.Google Scholar
Crow, T. J. (1986) Left brain, retrotransposons and schizophrenia. British Medical Journal, 293, 34.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Dauphinais, D. & Gershon, E. S. (1988) Perinatal complications and reduced size of brain limbic structures in familial schizophrenia. Schizophrenia Bulletin, 14, 185191.Google Scholar
DeMyer, M. K., Gilmor, R. L., Hendrie, H. C., et al (1988) Magnetic resonance brain images in schizophrenic and normal subjects: influence of diagnosis and education. Schizophrenia Bulletin, 14, 2132.Google Scholar
Dupont, R. M., Jernigan, T. L., Butters, N., et al (1990) Subcortical abnormalities detected in bipolar affective disorder using magnetic resonance imaging. Archives of General Psychiatry, 47, 5559.Google Scholar
Friede, R. (1975) Developmental Neuropathology. New York: Springer.Google Scholar
Halbreich, U., Bakhai, Y., Bacon, K. B., et al (1989) The normalcy of self-proclaimed “normal volunteers”. American Journal of Psychiatry, 146, 10521055.Google Scholar
Hauser, P., Dauphinais, I. D., Berrettini, W., et al (1989) Corpus callosum dimensions measured by magnetic resonance imaging in bipolar affective disorder and schizophrenia. Biological Psychiatry, 26, 659668.Google Scholar
Heindel, W., Bunke, J., Glathe, S., et al (1988) Combined 1H-MR imaging and localised 31P-spectroscopy of intracranial tumors in 43 patients. Journal of Computer Assisted Tomography, 12, 907916.CrossRefGoogle ScholarPubMed
Hubesch, B., Marinier, D. S., Hetherington, H. P., et al (1989) Clinical MRS studies of the brain. Investigative Radiology, 24, 10391042.Google Scholar
Hyman, R. A. & Gorey, M. T. (1988) Imaging strategies for MR of the brain. Radiologic Clinics of North America, 26, 471503.Google Scholar
Jack, C. R., Twomey, C. K., Zinsmeister, A. R., et al (1989) Anterior temporal lobes and hippocampal formation: normative volumetric measurements from MR images in young adults. Radiology, 172, 549554.Google Scholar
Jeste, D. V. & Lohr, J. B. (1989) Hippocampal pathologic findings in schizophrenia. Archives of General Psychiatry, 46, 10191024.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Crow, T. J., MacMillan, J. F., et al (1986) A magnetic resonance study of early schizophrenia. Journal of Neurology, Neurosurgery and Psychiatry, 49, 136139.Google Scholar
Johnstone, E. C., Owens, D. G. C., Crow, T. J., et al (1989) Temporal lobe structure as determined by nuclear magnetic resonance in schizophrenia and bipolar affective disorder. Journal of Neurology, Neurosurgery and Psychiatry, 52, 736741.Google Scholar
Kelsoe, J. R., Cadet, J. L., Pickar, D., et al (1988) Quantitative neuroanatomy in schizophrenia: a controlled magnetic resonance imaging study. Archives of General Psychiatry, 45, 533541.CrossRefGoogle ScholarPubMed
Kershavan, M. S., Pettegrew, J. W., Panchalingam, K., et al (1989) In vivo 31-P magnetic resonance (NMR) spectroscopy of the frontal lobe metabolism in neuroleptic naive first episode psychoses: preliminary studies. Schizophrenia Research, 2, 122.CrossRefGoogle Scholar
Kertesz, A., Polk, M., Howell, J., et al (1987) Cerebral dominance, sex and callosal size in MRI. Neurology, 37, 13851388.Google Scholar
Kertesz, A., Black, S. E., Tokar, G., et al (1988) Periventricular and subcortical hyperintensities on magnetic resonance imaging. Archives of Neurology, 45, 404408.Google Scholar
Kolodny, E. H. (1989) Agenesis of the corpus callosum. Neurology, 39, 847848.CrossRefGoogle ScholarPubMed
Laptook, A. R., Corbett, R. J. T., Uany, R., et al (1989) Use of 31P magnetic resonance spectroscopy to characterise evolving brain damage after perinatal asphyxia. Neurology, 39, 709712.Google Scholar
Lenkinski, R. E. (1989) Clinical magnetic resonance spectroscopy. Investigative Radiology, 24, 10341038.CrossRefGoogle ScholarPubMed
Lewis, S. W., Reveley, M. A., David, A. S., et al (1988) Agenesis of the corpus callosum in schizophrenia: a case report. Psychological Medicine, 18, 341347.Google Scholar
Lyon, M., Barr, C. E., Cannon, T. D., et al (1989) Fetal neural development and schizophrenia. Schizophrenia Bulletin, 15, 149161.Google Scholar
Mathew, R. J. & Partain, C. L. (1985) Midsagittal sections of the cerebellar vermis and fourth ventricle obtained with magnetic resonance imaging of schizophrenic patients. American Journal of Psychiatry, 142, 970971.Google ScholarPubMed
Mathew, R. J., Partain, C. L., Prakash, R., et al (1985) A study of the septum pellucidum and corpus callosum in schizophrenia with MR imaging. Acta Psychiatrica Scandinavica, 72, 414421.Google Scholar
McLeod, N. A., Williams, J. P., Machen, B., et al (1987) Normal and abnormal morphology of the corpus callosum. Neurology, 37, 12401242.CrossRefGoogle ScholarPubMed
Murray, R. M. & Lewis, S. W. (1987) Is schizophrenia a neurodevelopmental disorder? British Medical Journal, 295, 681682.Google Scholar
Nasrallah, H. A., Andreasen, N. C., Coffman, J. A., et al (1986) A controlled magnetic resonance imaging study of corpus callosum thickness in schizophrenia. Biological Psychiatry, 21, 274282.Google Scholar
Oberhaensli, R. D., Hilton-Jones, D., Bore, P. J., et al (1986) Biochemical investigation of human tumors in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet, ii, 811.CrossRefGoogle Scholar
O'Callaghan, E., Larkin, C., Redmond, O., et al (1988) ‘Early-onset schizophrenia’ after teenage head injury: a case report with magnetic resonance imaging. British Journal of Psychiatry, 153, 394396.Google Scholar
O'Callaghan, E., Larkin, C., Redmond, O., et al (1989) 31P magnetic resonance spectroscopy of the left temporal lobe in schizophrenia: procedures and preliminary results. Schizophrenia Research, 2, 125.Google Scholar
Olson, S. C., Coffman, J. A., Schwarzkopf, S. C., et al (1990) Characteristics of ‘normal’ controls who volunteer for schizophrenia research. Schizophrenia Research, 3, 92.Google Scholar
Raz, S., Raz, N. & Bigler, E. D. (1988) Ventriculomegaly in schizophrenia: is the choice of controls important? Psychiatry Research, 24, 7177.Google Scholar
Rossi, A., Stratta, P. M., Gallucci, M., et al (1988a) Brain morphology in schizophrenia by magnetic resonance imaging (MRI). Acta Psychiatrica Scandinavica, 77, 741745.CrossRefGoogle ScholarPubMed
Rossi, A., Stratta, P. M., Gallucci, M., et al (1988b) Standardised magnetic resonance image intensity study in schizophrenia. Psychiatry Research, 25, 223231.Google Scholar
Rossi, A., Stratta, P. M., De Cataldo, S., et al (1988c) Cortical and subcortical computed tomographic study in schizophrenia. Journal of Psychiatric Research, 22, 99105.Google Scholar
Rossi, A., Stratta, P. M., Gallucci, M., et al (1989a) Quantification of corpus callosum and ventricles in schizophrenia with nuclear magnetic resonance imaging: a pilot study. American Journal of Psychiatry, 146, 99101.Google Scholar
Rossi, A., Stratta, P. M., D'Albenzio, L., et al (1989b) Reduced temporal lobe area in schizophrenia by magnetic resonance imaging: preliminary evidence. Psychiatry Research, 29, 261263.CrossRefGoogle ScholarPubMed
Sarpel, G., Chandry, F. & Hindo, W. (1987) Magnetic resonance imaging of periventricular hyperintensity in a Veterans Administration Hospital population. Archives of Neurology, 44, 725728.CrossRefGoogle Scholar
Shelton, R. C., Karson, C. N., Doran, A. R., et al (1988) Cerebral structural pathology in schizophrenia. American Journal of Psychiatry, 145, 154163.Google Scholar
Shulman, R. G. (1983) NMR spectroscopy of living cells. Scientific American, 248, 7683.Google Scholar
Smith, G. N., Iacono, W. G., Moreau, M., et al (1988) Choice of comparison group and findings of computerised tomography in schizophrenia. British Journal of Psychiatry, 153, 667674.Google Scholar
Smith, R. C., Calderon, M., Ravichandran, G. K., et al (1984) Nuclear magnetic resonance in schizophrenia: a preliminary study. Psychiatry Research, 12, 137147.Google Scholar
Smith, R. C., Baumgartner, R. & Calderon, M. (1987) Magnetic resonance imaging studies of the brains of schizophrenic patients. Psychiatry Research, 20, 3346.Google Scholar
Stratta, P., Rossi, A., Gallucci, M., et al (1989) Hemispheric asymmetries and schizophrenia: a preliminary magnetic resonance imaging study. Biological Psychiatry, 25, 275284.Google Scholar
Suddath, R. L., Casanova, M. F., Golderbg, T. E., et al (1989) Temporal lobe pathology in schizophrenia: a quantitative magnetic resonance imaging study. American Journal of Psychiatry, 146, 464472.Google ScholarPubMed
Takahashi, R., Flor-Henry, P., Gruzelier, J., et al (1987) Cerebral Dynamics, Laterality and Psychopathology. Amsterdam: Elsevier.Google Scholar
Uematsu, M. & Kaiya, H. (1988a) The morphology of the corpus callosum in schizophrenia: an MRI study. Schizophrenia Research, 1, 391398.Google Scholar
Uematsu, M. & Kaiya, H. (1988b) Cerebellar vermal size predicts drug response in schizophrenic patients: a magnetic resonance imaging (MRI) study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 12, 837848.Google Scholar
Waddington, J. L. (1989) Sight and insight: brain dopamine receptor occupancy by neuroleptics visualised in living schizophrenic patients by positron emission tomography. British Journal of Psychiatry, 154, 433436.Google Scholar
Waddington, J. L. (1990) Sight and insight: regional cerebral metabolic activity in schizophrenia visualised by positron emission tomography, and competing neurodevelopmental perspectives. British Journal of Psychiatry, 156, 615619.Google Scholar
Waddington, J. L., O'Callaghan, E. & Larkin, C. (1988) Premorbid neuropathology in schizophrenia. Lancet, ii, 959960.Google Scholar
Weinberger, D. R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660669.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.