Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T01:47:14.986Z Has data issue: false hasContentIssue false

Weak lensing study of low mass groups: implications for Ωm

Published online by Cambridge University Press:  26 May 2016

H. Hoekstra
Affiliation:
1Kapteyn Astronomical Institute, P.O. Box 800, NL-9700 AV, Groningen, The Netherlands
M. Franx
Affiliation:
2Leiden Observatory, P.O. Box 9513, 2300 RA, Leiden, The Netherlands
K. Kuijken
Affiliation:
1Kapteyn Astronomical Institute, P.O. Box 800, NL-9700 AV, Groningen, The Netherlands
R. G. Carlberg
Affiliation:
3Department of Astronomy, University of Toronto, Toronto, ON, M5S 3H8, Canada
H. K. C. Yee
Affiliation:
3Department of Astronomy, University of Toronto, Toronto, ON, M5S 3H8, Canada

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on the first measurement of the average mass and mass-to-light ratio of galaxy groups by analysing the weak lensing signal induced by these systems. The Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) allows the identification of a large number of groups at intermediate redshifts. For our analysis we use a sample of 50 groups which are selected on the basis of a careful dynamical analysis of group candidates. We detect a signal at the 99% confidence limit. The best fit singular isothermal sphere model yields an Einstein radius rE = 0″.72 ± 0″.29. This corresponds to a velocity dispersion of 〈σ21/2 = 274±+48-59 km/s, which is in good agreement with the dynamical estimate. Under the assumption that the light traces the mass, we find an average mass-to-light ratio of 191 ± 83 h in the restframe B band. Unlike dynamical estimates, this result is insensitive to problems associated with determining group membership. We use the observed mass-to-light ratio to estimate the matter density of the universe, for which we find Ωm = 0.19 ± 0.10 (ΩΛ = 0), in good agreement with other recent estimates. For a closed universe (Ωm + ΩΛ = 1), we obtain Ωm = 0.13 ± 0.07.

Type
Part VIII: Dark Matter and Ω0
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Carlberg, R. G., Yee, H. K. C. & Ellingson, R. 1997, ApJ, 478, 462.Google Scholar
Carlberg, R. G., Yee, H. K. C., Morris, S. L., Lin, H., Hall, P. B., Patton, D. R., Sawicki, M. & Shepherd, C. W. 2000, ApJ submitted (astro-ph/0008201).Google Scholar
De Bernardis, P. et al. 2000, Nature, 404, 955.CrossRefGoogle Scholar
Gott, J. R. III & Turner, E. L. 1977, ApJ, 213, 309.CrossRefGoogle Scholar
Hoekstra, H., Franx, M. & Kuijken, K. 2000a, ApJ, 532, 88.CrossRefGoogle Scholar
Hoekstra, H., Franx, M., Kuijken, K., Carlberg, R. G., Yee, H. K. C., Lin, EL, Morris, S. L., Hall, P. B., Patton, D. R., Sawicki, M. & Wirth, G. D. 2000b, ApJL, submitted.Google Scholar
Hoekstra, H., et al. 2000c, to be submitted.Google Scholar
Lin, H., Yee, H. K. C., Carlberg, R. G., Morris, S. L., Sawicky, M., Patton, D. R., Wirth, G. & Shepherd, C. W. 1999, ApJ, 518, 533.Google Scholar
Nolthenius, R. & White, S. D. M. 1987, MNRAS, 235, 505.Google Scholar
Yee, H. K. C., Morris, S. L., Lin, H., Carlberg, R. G., Hall, P. B., Patton, D. R., Sawicki, M., Wirth, G. D., Ellingson, E. & Shepherd, C. W. 2000, ApJS, in press (astro-ph/0004026).Google Scholar