Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T15:37:28.437Z Has data issue: false hasContentIssue false

Weak Gravitational Lensing—The Need for Surveys

Published online by Cambridge University Press:  25 May 2016

P. Schneider*
Affiliation:
Max-Planck-Institut für Astrophysik, Garching

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Light rays from distant sources are deflected if they pass near an intervening matter inhomogeneity. This gravitational lens effect is responsible for the well-established lens systems like multiple-imaged QSOs, (radio) ‘Einstein’ rings, the giant luminous arcs in clusters of galaxies, and the flux variations of stars in the LMC and the Galactic bulge seen in the searches for compact objects in our Galaxy. These types of lensing events are nowadays called ‘strong lensing,’ to distinguish it from the effects discussed here: light bundles are not only deflected as a whole, but distorted by the tidal gravitational field of the deflector. This image distortion can be quite weak and can then not be detected in individual images. However, since we are lucky to live in a Universe where the sky is full of faint distant galaxies, this distortion effect can be discovered statistically. This immediately implies that weak lensing requires excellent and deep images so that image shapes (and sizes) can be accurately measured and the number density be as high as possible to reduce statistical uncertainties. Weak gravitational lensing can be defined as using the faint galaxy population to measure the mass and/or mass distribution of individual intervening cosmic structures, or the statistical properties of their mass distribution, or to detect them in the first place, independent of the physical state or nature of the matter, or the luminosity of these mass concentrations. In addition, weak lensing can be used to infer the redshift distribution of the faintest galaxies. After introducing the necessary concepts, I will list the main applications of weak lensing and discuss some of them in slightly more detail, stressing the need for very deep and wide-field images of the sky taken with instruments of excellent image quality.

Type
Part 5. Extra-Galactic Astronomy
Copyright
Copyright © Kluwer 1998 

References

Bartelmann, M. & Narayan, R. 1995, Astrophys. J. 451, 60.CrossRefGoogle Scholar
Bartelmann, M., Narayan, R., Seitz, S. & Schneider, P. 1996, Astrophys. J. 464, L115.CrossRefGoogle Scholar
Bartelmann, M. & Schneider, P. 1994, Astron. Astrophys. 284, 1.Google Scholar
Bonnet, H., Fort, B., Kneib, J.-P., Mellier, Y. & Soucail, G. 1993, Astron. Astrophys. 280, L7.Google Scholar
Bonnet, H. & Mellier, Y. 1995, Astron. Astrophys. 303, 331.Google Scholar
Brainerd, T.G., Blandford, R.D. & Smail, I. 1996 Astrophys. J. 466, 623.CrossRefGoogle Scholar
Broadhurst, T.J., Taylor, A.N. & Peacock, J.A. 1995, Astrophys. J. 438, 49.CrossRefGoogle Scholar
Dell' Antonio, I.P. & Tyson, J.A. 1996, astro-ph/9608043.Google Scholar
Fahlman, G., Kaiser, N., Squires, G. & Woods, D. 1994, Astrophys. J. 437, 56.CrossRefGoogle Scholar
Fort, B., Mellier, Y. & Dantel-Fort, M. 1996, astro-ph/9606039.Google Scholar
Fort, B., Mellier, Y., Dantel-Fort, M., Bonnet, H. & Kneib, J.-P. 1996 Astron. Astrophys. 310, 705.Google Scholar
Kaiser, N. 1995, Astrophys. J. 439, L1.CrossRefGoogle Scholar
Kaiser, N. & Squires, G. 1993, Astrophys. J. 404, 441.CrossRefGoogle Scholar
Kaiser, N., Squires, G. & Broadhurst, T. 1995, Astrophys. J. 449, 460.CrossRefGoogle Scholar
Kochanek, C.S. 1990, Mon. Not. R. astron. Soc. 247, 135.Google Scholar
Luppino, G. & Kaiser, N. 1996, astro-ph/9601194.Google Scholar
Miralda-Escudé, J. 1991, Astrophys. J. 370, 1.CrossRefGoogle Scholar
Schindler, S. & Wambsganss, J. 1996, preprint.Google Scholar
Schneider, P. 1996, Mon. Not. R. astron. Soc., in press.Google Scholar
Schneider, P., Ehlers, J. & Falco, E.E. 1992, “Gravitational lenses,” Springer: New York.Google Scholar
Schneider, P. & Rix, H.-W. 1996, Astrophys. J., in press.Google Scholar
Schneider, P. & Seitz, C. 1995, Astron. Astrophys. 294, 411.Google Scholar
Seitz, C., Kneib, J.-P., Schneider, P. & Seitz, S. 1996, Astron. Astrophys. (in press).Google Scholar
Seitz, C. & Schneider, P. 1995, Astron. Astrophys. 297, 287.Google Scholar
Seitz, S. & Schneider, P. 1996a, Astron. Astrophys. 305, 383.Google Scholar
Seitz, C. & Schneider, P. 1996b, Astron. Astrophys., in press.Google Scholar
Smail, I., Ellis, R.S. & Fitchett, M.J. 1994, Mon. Not. R. astron. Soc. 270, 245.CrossRefGoogle Scholar
Squires, G. & Kaiser, N. 1996, preprint.Google Scholar
Squires, G. et al. 1996, Astrophys. J. 461, 572.CrossRefGoogle Scholar
Tyson, J.A., Valdes, F., Jarvis, J.F. & Mills, A.P. Jr. 1984, Astrophys. J. 281, L59.CrossRefGoogle Scholar
Tyson, J.A., Valdes, F. & Wenk, R.A. 1990, Astrophys. J. 349, L1.CrossRefGoogle Scholar
Van Waerbeke, L., Mellier, Y., Schneider, P., Fort, B. & Mathez, G. 1996, Astron. Astrophys., in press.Google Scholar
Villumsen, J.V. 1996, Mon. Not. R. astron. Soc. 281, 369.CrossRefGoogle Scholar