Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-w9nzq Total loading time: 0.218 Render date: 2021-08-04T01:16:10.670Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Tests and discussion on the solution uniqueness of population synthesis methods

Published online by Cambridge University Press:  07 August 2017

Alex A. Schmidt
Affiliation:
Universidade Federal de Santa Maria, Depto. de Matemática, 97119 Santa Maria - RS, Brazil Astronomy Centre, University of Sussex, Falmer, Brighton, BN1 9QH, UK
Marcus V.F. Copetti
Affiliation:
Universidade Federal de Santa Maria, Depto. de Matemática, 97119 Santa Maria - RS, Brazil Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ, UK
Danielle Alloin
Affiliation:
Observatory de Paris - URA 173 du CNRS, Département d'Astrophysique Extragalactique et de Cosmologie, F-92195 Meudon, France
Pascale Jablonka
Affiliation:
Observatory de Paris - URA 173 du CNRS, Département d'Astrophysique Extragalactique et de Cosmologie, F-92195 Meudon, France

Extract

Population synthesis is a powerful tool to study stellar populations where the analysis of the stellar content of a composite system is based on the results of breaking down into components (of a given base) the spectrum of the observed system. Such process constitutes an inverse problem which can have a multitude of possible or “acceptable” solutions. This degenerative character of the synthesis rises mainly from observable errors and from the base of components itself with respect to its internal consistency and its (in)capacity to fully embrace all the free parameters involved.

Type
Poster Papers
Copyright
Copyright © Kluwer 

References

Bica, E., 1988, Astr. Astrophys. , 195, 76.Google Scholar
Schmidt, A.A., Copetti, M.V.F., Alloin, D. and Jablonka, P., 1991, MNRAS , 249, 766.CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Tests and discussion on the solution uniqueness of population synthesis methods
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Tests and discussion on the solution uniqueness of population synthesis methods
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Tests and discussion on the solution uniqueness of population synthesis methods
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *